
ELEC-E7130 Network capture tutorial

Markus Peuhkuri Tran Thien Thi

This documents provides you some helpful instructions capturing packets, tools
to analyse them and to construct flow data out of them. Finally there will
discussion about data structures that may be needed for large data.

Packet capture
Capture tools
The first task for a network data analysis is to capture network packets. Refer
the first exercise for usage of tcpdump and dumpcap.

When networks are using the shared medium like Ethernet or WLAN, everyone
is able to capture the traffic by just putting the network card into promiscuous
mode and starts listening to the link. In normal operations NICs will filters out
all the packets not destined to their own MAC address except the broadcast
or any multicast messages (if the host has joined any multicast group) but
in promiscuous mode, all packets are accepted and will delivered to operating
system.

These days almost all local area networks (LAN) use switches with point-to-
point links where each NIC is directly connected to a separate switch port and
thus a computer connected to wired network can only see its own, multicast,
and broadcast traffic mostly. Within certain situation, the switches may also
broadcast other packets.

There are several solutions to capture traffic from switched network links such
as link taps or more advanced method of port monitoring and mirroring (where
switch will replicate a copy of each frame to the mirrored link). Capturing
network traffic usually requires administrative permissions from root or Admin-
istrator. Linux systems can be configured to allow any user in wireshark group
to be able to capture network traffic. It is actually recommended not to run
Wireshark as a root but as a user who is in wireshark group.

Before capturing packets, you need to specify one interface which you will be
using for sniffing packets. Network interface is basically the thing that connects
your device to the Internet, i.e., enables Internet connections. If you are unsure
about your currently available interfaces, check them easily with ifconfig (old

1



school) or ip link (modern) command. Choose the interface that connects to
the Internet (i.e., not loopback).

You can also use dumpcap -D option to see interfaces your present user is au-
thorized to capture from.

For example following command has been used to capture traffic from eth0
interface using dumpcap tool for duration of one hour and saving first 96
bytes from each packet into in capture.pcap file:

dumpcap -a duration:3600 -i eth0 -s 96 ´-P -w capture.pcap

In addition to a single file, both tcpdump and dumpcap do support capturing
into multiple files in rotation. Check tcpdump options -C, -G, and -W; dumppcap
option -b.

Packet data analysis
Wireshark, tshark and tcpdump are good tools to make interactive analysis
and quick checks. See Reasonably short introduction to using Linux/Unix and
network measurement tools for details. Also check Extracting packet data below.

Sustained analysis of terabytes of data does need tools optimised for this usage.
There are many tools originating from research or information security commu-
nities available for massive data analysis while no single analysis tool can answer
all the requirements imposed by different scenarios.

Following tools are tested and believed to be useful tools for data analysis. These
are available either as standard tools in Aalto Linux environment or installed in
course directory. You can have them into use by sourcing familar use.sh script.

Table 1: Mass analysis tools

Software GUI/CLI Description
CoralReef CLI A set of tools (more important tools in the set are

crl_flow) for flow based analysis. However,
CoralReef is not maintained anymore and not all
features work on recent Linux distributions.
Documentation

NetMate CLI Flow based analysis. Outputs more features than
CoralReef which can be helpful for ML
classification purposes. Documentation

TStat CLI Stateful analysis tool. Produces TCP and UDP
connection data and also histograms.
Documentation

tcptrace CLI Provides TCP connection analysis. Documentation
tcpstat CLI Provides statistics for each intervals.

Documentation

2

http://www.caida.org/tools/measurement/coralreef/doc/doc/index.html
https://dan.arndt.ca/nims/calculating-flow-statistics-using-netmate/
http://tstat.polito.it/
http://www.tcptrace.org/manual/index.html
https://linux.die.net/man/1/tcpstat


Software GUI/CLI Description
Wireshark GUI Industry standard for inspecting packet captures.

Includes protocol-specific decoding and analysis
tools, e.g. for VoIP calls and other RTP traffic.

TShark CLI Command line version of Wireshark. Can be used
from scripts to analyse captures.

Capinfos CLI A program tool that reads one or more capture files
(supported by Wireshark) and returns some or all
available statistics (info) in one of two types of
output formats: long or table. Documentation

tcpslice CLI Allows combining multiple pcap files and extracting
specified time frame from those.

Next we will take a look at their basic usage. Let’s assume that the captured
file is named as capture.pcap.

NetMate
NetMate is another CoralReef-like software for producing flow information from
the captured packets. For each flows, it will be able to produce 44 different
features.

NetMate is installed on Aalto computers in the course folder. Source the use.sh
script and you are able to use it. You need to run in such directory where you
have write access. It will overwrite any netmate.pid and netmate.log files in
that directory.

If you want to install NetMate by yourself to your Linux system,
first you need to git clone https://github.com/danielarndt/netmate-
flowcalc and then you can follow installation instructions1. Some
of the libraries need to be installed for the successful installation.
By default, it will install to /usr/local if you install it with root
privileges. You can install it also into another location but you need
to modify PATH environment variable.

The NetMate is configured with rule file. Basic example can be found from
/work/courses/unix/T/ELEC/E7130/general/netmate/ as netAI-e7130.xml.
You need to copy it into your directory and modify the Filename
preference to point into your directory. You can specify filename as
/proc/self/cwd/netmate.out in which case it will generate netmate.out file
into current diretory.

Then run the following command to get the flow files:

netmate -r netAI-e7130.xml -f capture.pcap -l capture.log
1The site has an expired TLS certificate late August 2019; follow appropriate caution.

3

https://www.wireshark.org/docs/man-pages/capinfos.html
https://github.com/danielarndt/netmate-flowcalc
https://github.com/danielarndt/netmate-flowcalc
https://dan.arndt.ca/nims/calculating-flow-statistics-using-netmate/


The NetMate does not support reading from named pipes or from compressed
capture files.

CoralReef
CoralReef is a software to produce flow level information from the captured pack-
ets. Flow is a group of packets with the similar properties, especially source IP,
destination IP, source port, destination port, and protocol. When determining
some traffic statistics, analyzing flows can be better idea than analyzing packets.

The next commands can generate flow information from capture.pcap file:

1. To convert pcap file into flows generating multiple files:

crl_flow -Ci=3600 -cl -Tf60 -O %i.t2 -Cai=1 capture.pcap

Where some of the options are as follows:

• Period defined is one hour -Ci=3600, this affects to the total number
of output files

• Counters cover whole lifetime of flow -cl
• Flows expire after 60-second inactivity -Tf60, this affects to the total

number of flow instances
• Output to sequentially numbered files -O %i.t2, just for formatting

file names
• Intervals aligned round intervals -Cai=1. In this case interval starts

at each hour wall clock time.

2. To convert pcap file into flows generating only one file:

crl_flow -I -Ci=172800 -cl -Tf60 -o output-all-ended.t2 -Cai=1 $TRACE/capture/flow.pcap

Where the option -o outfile specifies the (non-rotating) output file to
write to (default: stdout), in other words, store the flow data in only one
file.

Created file above (1.t2 or output-all-ended.t2) can be then sorted e.g. by
bytes (-Sb) to show only the 10 largest flows (-n 10):

t2_top -Sb -n 10 < 1.t2

Tstat
The tstat is designed to be run over long period of times. It has also large
set of options. At the minimum, the network and histogram options should be
defined.

• -N net.conf

This defines “internal” network. If capture is done in single machine, there
should be just one file containing host IP address with 32-bit prefix like:
192.0.2.5/32.

4



• -H histo.conf

This defines included histograms. If you want all, the file contains just
line include ALL.

Example:

tstat -N net.conf -H histo.conf capture.pcap

Above command will read trace from file capture.pcap and outputs results
to file capture.pcap.out directory. You can specify output directory with -s
outdir option. You can supply also multiple trace files, but those must be in
chronological order.

This output directory consists lots of trace data which could be used for, e.g.,
plotting some useful graphs. In order to plot such graphs, you need to download
Perl scripts plot_cum.pl and plot_time.pl from http://tstat.polito.it/viewvc
/software/tstat/trunk/scripts/ . After you have downloaded them, give them
execution rights with chmod +x [SCRIPT] and run them on the output directory.
You might need to install some required Perl modules (such as Date::Manip)
which will require superuser privileges.

Tcptrace
Tcptrace is for analysing TCP connections from the captured file. When given
some specific options, tcptrace can also output some .xpl files that could be
used for shell plotting with xplot command.

By default it will print one line per TCP connection listing number of segments
in each direction. Output can be modified with options, some of importat
options include:

• -n: do not resolve host names (runs much faster)
• -o5: print only connection 5 (can also be range -o5-14)
• -l: prints long output for each connection.
• --csv: provide long output in CSV format.
• -r provide RTT statistics for each connection (analysis is slower).

Running tcptrace on the captured file to produce long statistics to a CSV file:

tcptrace -n -l --csv capture.pcap > capture-tcp.csv

Tcpstat
Command tcpstat can be used to check interface or read captured packet files
to display some statistics for each interval. Interval will be 5 seconds if not
specified further.

tcpstat -r capture.pcap

5

http://tstat.polito.it/viewvc/software/tstat/trunk/scripts/
http://tstat.polito.it/viewvc/software/tstat/trunk/scripts/


By default, tcpstat will output timestamp, number of passed packets, average
size of packets, standard deviation of packets, and bandwidth as bits per sec-
ond (from left to right). Furthermore, tcpstat can be configured to produce
different kind of output using format string provided by -o option. For exam-
ple, %S\t%p\t%b\n will print a line for each interval including UNIX timestamp,
packets per second and bits per second over that interval.

It also supports BPF to include only a part of traffic in statistics.

Tcpslice
Another useful tool is tcpslice that will combine number of PCAP files op-
tionally extracting only range of packets. For example, if have large number
of PCAP files (long capture that has been split by hour for example) in cap
diretory and you want to extract all ICMP traffic for a week starting from 15th
September 2019. The results will be saved to icmp15+7.pcap file.

tcpslice -w - 2019y9m15d +7d cap/* | tcpdump -r - -w icmp15+7.pcap icmp

Extracting packet data
In many cases you need to make analysis on individual packets. With tcpdump
you can parse textual output with regular expressions. You can control tcpdump
output using following options:

• -n: do not resolve names. If you want to work with IP addresses, you do
not want them to be resolved. Also speeds processing significantly.

• -tt: print timestamp as seconds from epoch. Other number of ts modify
output.

• -q: quick/quiet output prints less than default
• -v: verbose output. Use two or three v for even more verbose output. Ver-

bose output results multi-line output where the first line includes times-
tamp and continuation lines are indented with spaces.

Let’s consider for example that you want to analyse delays and packet
loss from ICMP echo messages. By running /usr/sbin/tcpdump -ntt -r
capture.pcap icmp we can extract all ICMP messages from the capture. The
output would be something like:

reading from file tmp/test.pcap, link-type EN10MB (Ethernet)
1569215008.517695 IP 192.0.2.155 > 8.8.8.8: ICMP echo request, id 24357, seq 1, length 64
1569215008.541868 IP 8.8.8.8 > 192.0.2.155: ICMP echo reply, id 24357, seq 1, length 64

From the output we can see it includes all required fields, no need for -v option.
To parse each line, we can use again regular expressions. With following line we
capture all fields:

^(\d+\.\d+) IP ([0-9.]+) > ([0-9.]+): ICMP echo (request|reply), id (\d+), seq (\d+), length (\d+)$

We can then use it in perl script:

6



#!/usr/bin/perl -w
use strict;

while(<>) {
if (m/^(\d+\.\d+) IP ([0-9.]+) > ([0-9.]+): ICMP echo (request|reply), id (\d+), seq (\d+), length (\d+)$/) {

my @res = @{^CAPTURE}; # same as ($1, $2, $3, ...)
if ($res[3] eq "request") {
$res[3] = 0;

} else { # guaranteed to be reply
$res[3] = 8;

}
print join(",", @res), "\n";

}
}

or equivalent python:

#!/usr/bin/env python3

import sys
import re

if (len(sys.argv)<2):
print("Give input file name (/dev/stdin to read standard input)")
sys.exit()

r=re.compile('(\d+\.\d+) IP ([0-9.]+) > ([0-9.]+): ICMP echo (request|reply), id (\d+), seq (\d+), length (\d+)')

for line in open(sys.argv[1]):
m=r.match(line)
if m is None:

continue
if m[4] == 'request':
rq = '0'

elif m[4] == 'reply':
rq = '8'

print(','.join([m[1], m[2], m[3], rq, m[5], m[6], m[7]]))

Pipe tcpdump output to a script and direct script output to a CSV file that can
then be further analysed with suitable tools.

/usr/sbin/tcpdump -n -r capture.pcap icmp | ./icmp2csv.pl > echos.csv

While tcpdump do have the benefit of being readily available with moderate
memory requirements, parsing textual output can be cumbersome. Converting
data into textual format is also slow. There exists PCAP library interfaces for

7



perl (Net::Pcap and Net::Pcap::Easy) that provide helper functions to decode
basic protocols with one packet a time. For python there exists PyPCAP and
Scapy of which the latter will read files as whole.

The other alternative would be to use tshark. It can decode packet data and
output desired information as CSV and JSON formats. The drawback being
that it will consume large amounts of memory for large captures. This can be
helped with pre-filtering data with tcpdump, for example.

#!/bin/sh
export LANG=C
tshark -n -r ${1:-capture.pcap} -Y icmp.code==0 \
-T fields -E header=y -E separator=, -E occurrence=f \
-e frame.time_epoch -e ip.src -e ip.dst -e icmp.type \
-e icmp.ident -e icmp.seq -e ip.len -e ip.hdr_len -e icmp.resptime

The output above script produced was not exactly identical but had two minor
differences.

1. ICMP packet length was not printed as a single value but as two values:
IP packet length (ip.len) and IP packet header length (ip.hdr_len in
bytes). The length would be ip.len - ip.hdr_len. You can find
all variables from Display Filter Reference. Quite often it is a good idea
to test variables with Wireshark as it provides easy help and suggests
extensions.

2. Another difference is that we got also the response time without calcu-
lating it. The tshark runs multiple analysis on data and results can be
extracted. Also check -z option that will run additional statistical mod-
ules, for example -z icmp,srt. The same statistical modules are also
available in Wireshark, so you can try out them easily.

And yes, it also had a header line. In addition to CSV, you can output in
different formats, including JSON. Some formats produce huge amounts of data,
test first with small captures. You can control JSON output with -j and -J
options. Check wireshark documentation for details.

Network interface statistics
Operating systems also provide statistics of network traffic (By default Windows
provide only small amount of information about network traffic, counters and
more advanced configurations are needed to extract those information from a
Windows machine). By checking interface properties there are information of
sent packets, bytes or both. In Linux systems, for example, ip reports following
information:

ip -s link show dev wlp2s0
3: wlp2s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DORMANT group default qlen 1000

link/ether e4:b3:de:ad:be:ef brd ff:ff:ff:ff:ff:ff
RX: bytes packets errors dropped overrun mcast

8

https://metacpan.org/pod/Net::Pcap
https://metacpan.org/pod/Net::Pcap::Easy
https://github.com/pynetwork/pypcap
https://scapy.net/
https://www.wireshark.org/docs/dfref/
https://www.wireshark.org/docs/


1773715758 1758985 0 0 0 0
TX: bytes packets errors dropped carrier collsns
251208218 1175505 0 0 0 0

In other Unix-like systems and older Linux systems there has been ifconfig
and netstat commands but but those are depracticed on Linux. Most ot their
functionality is replaced with ip and ss commands. Many statistics can be
found under /proc/net/ directory path..

Large data analysis
There are cases where a simple approach to store information is not possible.
In networking, data structures can be quite sparse. If one wants to count how
many times each IPv4 addresses exists as a source address, even this simple can
take lot of memory. Using 4 bytes per packet, it will use 4*232 bytes, about 17.2
GB. While this is possible with modern computer, there will be only a fraction
of those values in trace.2 With IPv6 and 128 bit addresses, this is not possible.

Following we will cover some examples how you could encode values to fit into
minimal address space. If you would use python or perl, using dictionaries
(dict()) or hash (%var) will be often sufficient.

This can be helpful, since in some future tasks, you will be dealing with pairs of
things. The things have different values but the similar pairs need to be dealt
accordingly. For instance, src-dst pair A-B is same as pair B-A, so when we are
calculating total amount of values for pair A-B, values from both pairs need to
be summed. With big amount of dataset, dealing with each pairs separately
can be time consuming, so one way to speed up the process is to encode similar
pairs into one.

Next examples are given using Perl, but as usual, you can use any programing
or scripting language or tool as long as the results are clear.

Let us next consider a measurement of relatively large number of flows. Example
trace file is in sample-flows.txt, which consists of about 2M flows observed in
one hour time interval. Each line in the trace file has the following information:

• SRC: Source address (64-bit, hexadecimal number)

• DST: Destination address (64-bit, hexadecimal number)

• PKT: Number of packets exchanged

The source address is the one initiate the connection and send the first packet.
Task is to determine the most active pairs of hosts, i.e., the pair that has most
number of flows exchanged in total.

2At one gigabit per second link, it will take about 36 minutes to send minimum sized packet
using all possible source addresses.

9



Preliminaries
A bitwise XOR operation is denoted by ⊕.

1011 ⊕ 0110 = 1101 (1)

Hash function ℎ(𝑥) in general maps the variable 𝑥 to an integer number in
some finite interval. Here we settle with simple hash functions based on XOR
operation. For example, for 32-bit IPv4 addresses of form 𝑎.𝑏.𝑐.𝑑 we could use
(𝑎|𝑏 ⊕ 𝑐|𝑑) to get a 16-bit integer number. This is like a lightweight secure hash
algorithm, i.e., the basic purpose of this XOR encoding is to ensure that two
similar pairs produce same encoded result. And two different pairs will not
likely produce same encoded result (but there is still small probability).

Solution 1: straightforward data structure (not using hash
function)
The first solution to solve this problem is using the already existing hash function
in library of Perl:3

#!/usr/bin/perl
my %F; # hash for flow counts

# read flows in and store to hash %F

while(<>) {
my ($src,$dst,$pkt) = split(’ ’,$_);
my $key = ($src lt $dst ? $src.’ ’.$dst : $dst.’ ’.$src);
$F{$key}++;

}

# sort hash and print the counts
foreach my $i (sort { $F{$b} <=> $F{$a} } (keys %F)) {
printf "%s %dn", $i, $F{$i};

}

The first part reads the data file one line at a time, forms an unique string by
combining the source and destination address in unambiguous way, and then
increases the value of hash at the corresponding memory location by one. Once
the file has been parsed, we sort the obtained values and print the result.

However, there is one potential issue with this approach: if the number of
SRC/DST pairs is huge, the size of the hash can become too large (in theory,
the size of the key space is 2255, which is an enormous number!).

3Source codes can be found from sampling-code.zip archive.

10



Solution 2: using hash function
In order to save memory, we can aggregate the flows. If we do this randomly
using an appropriate hash function, there is a high chance that the most common
pairs of hosts do not get combined to same entries.

Example:

#!/usr/bin/perl

use strict;
my @A; # fixed array for flow counts, size 65536

sub simple_hash {
my $a = shift; # 64-bit address
my ($h,$l)=split(':',$a);

return hex($h)^hex($l);
}

# read flows in and store to array @A
while(<>) {

my ($src,$dst,$pkt) = split(' ',$_);
my $key = simple_hash($src)^simple_hash($dst);

$key = ($key & 0xFFFF) ^ ($key << 16); # 16-bit value

$A[$key]++;
}

# sort hash and print the counts

foreach my $i (sort { $b <=> $a } @A) {
printf "%dn", $i;

}

Here we utilize a simple hash function that takes XOR of all 4 32-bit numbers
forming the address pair:

𝑥 = src.high ⊕ src.low ⊕ dst.high ⊕ dst.low (2)

Then to further reduce the memory consumption, the 32-bit number is com-
pressed to half by:

𝑥 = x.high ⊕ x.low (3)

11



Hence, 0 ≤ 𝑥216 then the corresponding entry in the fixed size array 𝐴 (with
size 216) is increased by one:

𝐴[𝑥] = 𝐴[𝑥] + 1 (4)

The final part is to sort array A and print out the results. The memory con-
sumption of this approach is clearly small. Also the sort operation is fast when
the size of the array is moderate as in here. The downside is that different flows
unavoidably do get aggregated, and therefore the results are only approximation
of the real one.

Solution 3: using command line tools
For small enough trace files, we can also utilize the standard Unix tools including
“sed”, “awk” and pipes as follows:

cat sample-flows.txt | awk '$1<$2{print $1,$2;next}{print $2,$1;}' |
sort | uniq -c | sort -r -n > sample-flows.cnt

Let’s now describe the command above. First, we read whole file contents with
cat command. Then we use awk text processing command to only deal with first
two columns and “encode” them. Next we use sort command to put similar
pairs nexts to each other. Then we use uniq -c to remove duplicate rows and
also to display their total amount of counts. Finally, we sort according to the
counts and output whole thing to another file. So, the desired result is in file
sample-flows.cnt and the most active flows are at the head of the file.

Measuring resource usage
Operating systems collect quite lot of resource consumption information from
each process. Easy way to know how much a program has been consumed
resources, is to use time command on Linux. It will print out how much CPU
time the process has used in user space (i.e. the program code) and how much
in system space (kernel, e.g. networking, file processing).

The shell built-in time will provide this basic information. If you want more
details from e.g. memory usage, an alternative is to use /bin/time command to
get more detailed resource consumption of a command, use -v for more verbose.

Another difference is that built-in time will report all CPU usage of pipeline;
time grep -v ERR * | sort -o output will include both grep and sort re-
source usage while /bin/time grep -v ERR * | sort -o output will only re-
port what was consumed by grep.

12



Useful tools or tips for completing this final as-
signment
Pre-installed software in school
Some of the tools such as Coral Reef or TStat which might help you for this
final assignment are already provided and installed in Aalto Linux workstations.
They are accessible after using one these commands:

1. source /work/courses/unix/T/ELEC/E7130/general/use.sh

2. source /work/courses/unix/T/ELEC/E7130/general/use.csh

As you already know first command is used if you using any Bourne Shell com-
patible (like bash or zsh) and second one is used when you are using C Shell
compatibles shells.

CoralReef software package provides several tools which can be useful in ana-
lyzing the captured trace files including:

• crl_to_pcap: for converting and anonymizing packet traces (in case you
want to do it for your own captured data)

• crl_flow: for summarising packet data to flows

For example, flow files used in Final Assignment Task 1 was generated with the
following command:

crl_to_pcap -r "[" pcap/*.pcap "]" |
crl_flow -Ci=3600 -Cai=1 -Tf60 -O flow-continue/%V-%u-%H%M.t2 pcap:-

In command above, first the captured packets were anonymized and then they
were converted into flows. Output file name is generated with “strftime” format-
ting. Name components are week number, day of week and time. Using reverse
name lookups, whois databases or geoip databases will lead to random results.

And files of tstat for Task 1 were generated using command below.

tstat -H histo-all.conf -N net.ten -s tstat-log -c ../pcap/*

The histo-all.conf content is include ALL which results it to produce all
histograms.

Finding geographical locations based on IP address
To convert IP addresses to (approximate) country listings one can use
geoiplookup command or python GeoIP library. For the latter simple example
is below program geoip.py that prints all IP addressed given as command line
arguments to stdout with two letter country code (or None if not known).

#!/usr/bin/env python3
import sys

13

http://www.thefreedictionary.com/anonymizing


import GeoIP
gi = GeoIP.new(GeoIP.GEOIP_MEMORY_CACHE)
for n in sys.argv[1:]:
print("%s %s" % (n, gi.country_code_by_addr(n)))

For Ubuntu the GeoIP python library can be installed from python3-geoip
package. Example usage of the program when using on Google’s popular name-
server. Remember to chmod +x geoip.py before running the command.

./geoip.py 8.8.8.8
8.8.8.8 US

TCP connection stats
In some tasks you will be dealing with TCP connections only. Use tcptrace
for handling such situations.

Traffic volume in certain interval
From pcap files it is easy to generate traffic volume by second - just calculate
sum of packet sizes captured within a second. Tool like tcpstat can be used for
that.

From flow data files (outputted by CoralReef) getting traffic volume is more
difficult because only start time, end time and flow size are known. Reasonable
approximation is distribute whole flow volume over lifetime of flow. So if flow
100 000 byte size flow starts at 3.4 and ends at 7.8 we can account 20 000 bytes
(160 kbit) for each second 3-7.

If flow is has duration of 0 seconds (i.e. just one packet) it would be counted
only towards that second it was calculated. A function update() in a program
below would be called for each flow record with following arguments:

• table an array large enough to hold bw information for each second. If
measurement period is one hour, it must have 3600 elements.

• t0 is start timestamp of measurements
• start and endare flow start and end times respectively
• bytes count of bytes in flow.

import sys

def update(table, t0, start, end, bytes):
# compute how many bits per second there are for each second
bps=8 * bytes / (int(end)-int(start) + 1)
try:

for sec in range(int(start), int(end) + 1):
table[sec-int(t0)] += bps

except IndexError:
print('Seconds was not within table bounds (0-%d):\n sec=%d\n t0=%d'%(len(table), sec, int(t0)), file=sys.stderr)

14

https://linux.die.net/man/1/tcpstat


raise
return

# Simple manual test function to play around
# In reality would read flow records from a file in a loop

def test():
# minimum timestamp (here 1970-01-01T00:01:40 but you would set it to start of capture
t0=100
# our analysis only 20 seconds long
tbl=[0.0]*20
# first flow, over 10 seconds, 600 bytes (4800 bits) per second
update(tbl, t0, 100.2, 109.8, 6000)
print(tbl) # print array content
# second flow over 8 seconds, partly overlaps with one earlier
update(tbl, t0, 108.9, 115.5, 12000)
# a 0 s length flow
update(tbl, t0, 119.4, 119.4, 40)
print(tbl)
# uncomment following lines to trigger an error
update(tbl, t0, 118.9, 125.5, 12000)
print(tbl)

test()

Further, it could be defined many more accurately by taking fractional seconds
into account (3rd second would get 12636 bytes, 4th to 6th 22 727 bytes each
and 7th 18 181 bytes). In table below that would be flow1.

Table 2: Example of distibuting flow over partial seconds

sec 1 2 3 4 5 6 7 8
flow1 .4← —– —– —– →.8
flow2 .1
bytes 40 0 12636 22727 22727 22727 18181 0

If flow is has duration of 0 seconds (i.e. just one packet), one could make an arti-
cial length of one microsecond: td=max(1e-6, end-start) or if one works with
start and end values, end=max(start + 1e-6, end). This can make computa-
tion easier as there would be no need to handle special case (td=0) dependig
how computation is organized. In table above flow2 would be single 40-byte
packet that was observed at 1.1 seconds.

15


	Packet capture
	Capture tools

	Packet data analysis
	NetMate
	CoralReef
	Tstat
	Tcptrace
	Tcpstat
	Tcpslice
	Extracting packet data
	Network interface statistics

	Large data analysis
	Preliminaries
	Solution 1: straightforward data structure (not using hash function)
	Solution 2: using hash function
	Solution 3: using command line tools
	Measuring resource usage

	Useful tools or tips for completing this final assignment
	Pre-installed software in school
	Finding geographical locations based on IP address
	TCP connection stats
	Traffic volume in certain interval


