
Supporting material for basic measurements

Markus Peuhkuri Seyud Mortezaei Sebastian Sonntag
Jiang Weixuan

Introduction
This supporting material will cover the main topics related to simple network
measurements and footprinting by using simple measurements tools such as
ping, traceroute, curl, iperf3 and more. We will especially focus on latency
measurement, throughput measurement, and finding available services.

After completion of this material the students have good understanding of the
basic measurement and footprinting tools and how to use them in networks to
get the basic performance measurement information.

Linux distributions do not have all of the programs pre-installed. In case of
Ubuntu and other Debian-based distros, use the following command to install
the packages (note: superuser privileges required, so you cannot use those in
Aalto IT computers).

sudo apt-get install [PACKAGE]

This documentation complements Linux Introduction.

Discovering services
In general discovering other protocols and remote services can be accomplished
in several different ways while in this example we mainly focus on port scanning
methods for service discovery.

NMAP

NMAP is great software for discovering available services on remote machines
by sending packets and analyzing their response. Then you are able to see
what kind of services are available and then send suitable kind of packets to
such destination. NMAP is free and available on both Windows and Linux
platforms.

1

https://mycourses.aalto.fi/pluginfile.php/1105245/mod_folder/content/0/linux_intro.pdf?forcedownload=1

Table 1: NMAP options. Some scan types require elevated privi-
leges.

Command Description Example
nmap x.x.x.x Scan the remote host for open ports nmap 192.168.100.250
nmap -v x.x.x.x Verbose scan mode nmap -v 192.168.100.250
nmap -sS x.x.x.x SYN scan nmap -sS 192.168.100.250
nmap -sA x.x.x.x ACK scan nmap -sA 192.168.100.250
nmap -F x.x.x.x Fast scan nmap -F 192.168.100.250
nmap -p y x.x.x.x Specific port scan (TCP by default) nmap -p 22 192.168.100.250
nmap -sU y x.x.x.x Specific UDP port scan nmap -sU 53 192.168.100.250
nmap -p y1- y2 x.x.x.x TCP range port scan nmap -p 1 - 99 20 192.168.100.250

For example, the command below shows all our machine’s available TCP ser-
vices and which ports they are using. You can compare the output to ss -lt
command output.

nmap localhost

Starting Nmap 7.01 (https://nmap.org) at 2019-07-19 14:41 EEST
Nmap scan report for localhost (127.0.0.1)
Host is up (0.000060s latency).
Other addresses for localhost (not scanned): ::1
Not shown: 996 closed ports
PORT STATE SERVICE
25/tcp open smtp
111/tcp open rpcbind
222/tcp open rsh-spx
631/tcp open ipp

Nmap done: 1 IP address (1 host up) scanned in 0.04 seconds

Note that usually running nmap command may take a while and still miss services
since it will scan by default 1000 most common ports of all 65,535 ports. A fast
scan -F will scan only common 100 ports. If you want to scan all ports, option
-p- can be used. Note that this will take a long time!

Also keep mind that scans may result complaints from network owners, so we
recommend extensive scans only to hosts you have control on or are instructed
to use.

Measuring round trip time (RTT), latency and connectivity
Next we will take a look some commands that could measure latency related
things, such as ping, dig, hping3, traceroute, and curl.

2

PING

ICMP protocol in TCP/IP stack provides a simple and efficient mechanism to
verify the connectivity, measure RTT, and packet loss rate among the different
hosts in the network: ping command. When a host receives ICMP echo request
message, it would respond to it by sending ICMP echo reply messages and
copying data part of received message to replied message.

ping -c 3 www.iana.org

PING ianawww.vip.icann.org (192.0.32.8) 56(84) bytes of data.
64 bytes from www.iana.org (192.0.32.8): icmp_seq=1 ttl=244 time=190 ms
64 bytes from www.iana.org (192.0.32.8): icmp_seq=2 ttl=244 time=188 ms
64 bytes from www.iana.org (192.0.32.8): icmp_seq=3 ttl=244 time=189 ms
--- ianawww.vip.icann.org ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 188.360/189.579/190.660/0.944 ms

In example above, ping command was issued to send three ICMP echo requests
to remote host www.iana.org. The ping command will print the result for
each received reply message with useful details such as sequence number, TTL,
time between request and reply messages, total number of transmitted/received
packets, percentage of packet loss and also a summary of statistics including
minimum, average, maximum, and mean deviation of RTTs.

Due to security reasons many hosts and web sites use firewall rules to drop
ICMP messages which make it impossible to use ICMP protocol to get the RTT
and connectivity check among the hosts. For example, the following attempt
will result all packets lost:

ping -c 3 www.bbc.co.uk

PING gtmlivelive-eu-c-1nlbwwwcouk-17e0f31403454351.elb.eu-central-1.amazonaws.com (3.120.156.170) 56(84) bytes of data.

--- gtmlivelive-eu-c-1nlbwwwcouk-17e0f31403454351.elb.eu-central-1.amazonaws.com ping statistics ---
3 packets transmitted, 0 received, 100% packet loss, time 2051ms

In these cases we need to use other methods and protocols to check the connec-
tivity and RTT among the hosts, such as dig and curl commands.

Host and dig

Generally about DNS system, when you first time try to access some website
with its domain name, your device must find out domain name’s IP address
before it can access the website. This is done by first sending DNS query to the
configured DNS server which will then iteratively ask the target’s IP address
from various nameservers until it gets answer which is returned back to your
device. Now your device can access the website which you typed initially, and
the website’s IP address will be stored in cache (which explains the next faster
loadings for the website).

3

If you are not familar with DNS system and do not know the differ-
ence beteen resolving and authoritative dns servers, recursion and
iterative resolving. caches, domains and zones, we recommend you
to to revisit some Understanding DNS course.

Command host is used to find IP-address of the host but it can also find other
things such as mail servers for a domain. In some cases you need more detailed
information to e.g. diagnose errors. The dig is the heavy-weight hammer to
use.1 The command performs DNS lookups and displays the answers that are
returned from the nameserver(s) that were queried, plus the query time which
could be useful for latency measurements.

Many DNS servers are only supposed to respond to DNS queries and not ICMP
messages so you are not able to measure the latency or delay using ICMP
messages. Instead, you could use dig command to see their response time.
Next we query the root name servers with dig command (the command works
via school servers but not from workstations).

dig fi @f.root-servers.net

; <<>> DiG 9.11.3-1ubuntu1.1-Ubuntu <<>> fi @f.root-servers.net
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19507
;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 9, ADDITIONAL: 19
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1232
;; QUESTION SECTION:
;fi. IN A

;; AUTHORITY SECTION:
fi. 172800 IN NS h.fi.
fi. 172800 IN NS b.fi.
fi. 172800 IN NS c.fi.
fi. 172800 IN NS d.fi.
fi. 172800 IN NS e.fi.
fi. 172800 IN NS f.fi.
fi. 172800 IN NS g.fi.
fi. 172800 IN NS a.fi.
fi. 172800 IN NS i.fi.

;; ADDITIONAL SECTION:
h.fi. 172800 IN A 87.239.120.11

1Dig command may not be installed by default. It is in dnsutils package in
Ubuntu/Debian.

4

h.fi. 172800 IN AAAA 2001:678:a0::aaaa
b.fi. 172800 IN A 194.146.106.26
b.fi. 172800 IN AAAA 2001:67c:1010:6::53
c.fi. 172800 IN A 194.0.11.104
c.fi. 172800 IN AAAA 2001:678:e:104::53
d.fi. 172800 IN A 77.72.229.253
d.fi. 172800 IN AAAA 2a01:3f0:0:302::53
e.fi. 172800 IN A 194.0.1.14
e.fi. 172800 IN AAAA 2001:678:4::e
f.fi. 172800 IN A 87.239.127.198
f.fi. 172800 IN AAAA 2a00:13f0:0:3::aaaa
g.fi. 172800 IN A 204.61.216.98
g.fi. 172800 IN AAAA 2001:500:14:6098:ad::1
a.fi. 172800 IN A 193.166.4.1
a.fi. 172800 IN AAAA 2001:708:10:53::53
i.fi. 172800 IN A 162.88.44.1
i.fi. 172800 IN AAAA 2600:2000:3008::1

;; Query time: 6 msec
;; SERVER: 2001:500:2f::f#53(2001:500:2f::f)
;; WHEN: Wed Sep 12 20:03:56 EEST 2018
;; MSG SIZE rcvd: 571

As an example to this case, when we query for available nameservers responsible
for serving .fi ccTLD, we will get a query reply in 80ms which is quite close
to what has been provided by traceroute. This is not always a case.

However for this example we will deal with root servers and as root servers are
serving only name service info for top level domains (gTLD like .com, .net and
ccTLD like .fi or .it and don’t know nothing else about particular branching
domains like example.com or example.fi, response times can be used as an
estimation for the delay when the ICMP protocol is blocked by firewall rules.

One very command issue with DNS queries are the caching servers. By default,
both the host and dig will use the DNS server configured into system (e.g. re-
ceived via DHCP request). These name servers are resolving name servers that
will cache the result.

However, because of the cache memory, continuosly repeating dig command will
result in zero latency which is misleading. You can easily test this with following
commands:

#!/bin/bash
generate random domain, most likely
1) would not exists
2) nobody has ever asked for that domain
name has about 310 bits of entropy
dom=$(pwgen -sn 60 1).com

5

echo Asking for host: $dom
dig $dom | fgrep time:
dig $dom | fgrep time:

Above script will ask for a random domain name twice in sequence. The local
name server will cache even negative response for a short period of time. The
second time should be a significantly shorter as it will be answered directly from
the local name server.

If the script is modified so that no local server is used but the authoritative one,
the responses should be more or less the same.

other lines as before
dig +norec $dom @k.gtld-servers.net | fgrep time:
dig +norec $dom @k.gtld-servers.net | fgrep time:

If you want to measure only network latency, make sure you ask only such
information that the server can reply right away. Using +norec flag instructs
name server not to initiate recursion, so the answer will come from local database
or local cache from server.

HPING and TCPPING

After detecting other services on remote machine we are able to use some special
tools such as hping3 or tcpping (tcping in Windows) to check the connectivity
and RTT. For example, hping3 is special ping-like command where the packet
can be customized. For instance, you are able to modify its real source IP-
address or give it TCP SYN flags. This is especially useful for testing own
firewall systems. However, notice that the latency of hping3 can be higher since
its protocol is TCP/IP which is not as lightweight as ICMP protocol. Note that
these may require super user access to run thus one cannot use them on Aalto
computers.

$ sudo hping3 -c 3 -S -p 80 www.aalto.fi
HPING www.aalto.fi (wlp2s0 192.230.77.222): S set, 40 headers + 0 data bytes
len=46 ip=192.230.77.222 ttl=56 DF id=0 sport=80 flags=SA seq=0 win=29200 rtt=31.7 ms
len=46 ip=192.230.77.222 ttl=56 DF id=0 sport=80 flags=SA seq=1 win=29200 rtt=31.4 ms
len=46 ip=192.230.77.222 ttl=56 DF id=0 sport=80 flags=SA seq=2 win=29200 rtt=31.5 ms

--- www.aalto.fi hping statistic ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 31.4/31.5/31.7 ms

Above hping3 command will issue three TCP (SYN) ping to destination
www.aalto.fi port 80.

Now despite of dropping of ICMP packets by the firewall rules we are still able
to check the connectivity and RTT information.

6

Traceroute

There are some situations where the network problem is not in the source or des-
tination host but in the path between the source and destination. traceroute
is another basic tool which can be used to detect all the hops among the source
and destination hosts, and also the RTT between the hops.

$ traceroute www.mtv3.fi
traceroute to www.mtv3.fi (178.217.129.234), 30 hops max, 60 byte packets
1 jgw-2-v834.aalto.fi (130.233.224.195) 0.220 ms 0.218 ms 0.246 ms
2 funet-10g-aalto-a.aalto.fi (130.233.231.189) 1.147 ms 1.167 ms 1.160 ms
3 espoo1-et-0-1-6-1.ip.funet.fi (86.50.255.253) 0.559 ms 0.575 ms 0.566 ms
4 espoo2-et-0-1-7-1.ip.funet.fi (86.50.255.233) 1.068 ms 1.065 ms 1.059 ms
5 tut6-et-0-1-0-1.ip.funet.fi (193.166.255.51) 2.994 ms 3.007 ms 3.022 ms
6 cybercom1.unicast.trex.fi (195.140.192.20) 3.725 ms 3.544 ms 3.526 ms
7 cdn-vip27.hard.ware.fi (178.217.129.234) 3.550 ms 3.591 ms 3.557 ms

And like before, when the ICMP protocol is blocked by firewall rules we can use
tcptraceroute if permitted or we have root access.

So far we got familiar with both ping and traceroute programs. The mtr
(pathping in Windows) is another useful command which combines the func-
tionality of the traceroute and ping programs in a single network diagnostic
tool.

Latency measurement with curl

Some of tools listed above are not possible to use with Aalto generic computers
as they require elevated privileges to send crafted packets. However, it is still
possible to measure RTT using TCP connection establishment delay as measure.
You can create your own program using C or python, for example, but the Swiss
knife of network transfers, curl provides an easy option.

Following script will connect to a site given as an argument and prints out CSV
with columns time since starting from initiating the request.

1. Reply from DNS lookup was received.
2. TCP connect was completed.
3. Transfer started.
4. Transfer completed.

#!/bin/bash
export LANG=C
fmt="%{time_namelookup}, %{time_connect}, %{time_starttransfer}, %{time_total}\n"
curl -w "$fmt" -o /dev/null -s ${1:-http://www.aalto.fi}

Time given is cumulative, i.e. to get TCP connect time you need to subtract
DNS lookup. As we want only the CSV output, the content of file is send to
bottomless sink -o /dev/null and the progress indicator is silenced -s.

7

https://curl.haxx.se/

The export LANG=C line above will make sure the output will use period as
decimal separator. If your user session default language is Finnish, for example,
the decimal separator is comma. That will result problems if the column sepa-
rator is also comma. The other alternative is to use for example semicolon ; or
tabulator between columns.

You may also want to check other --write-out information variables from curl
documentation from web or manual page. Make note to check which features
are available in the version you are using.

Measuring network throughput
Most network users are interested only about a single factor: how many bits
per second one can download or send with this network connection. This is also
what is advertised by network providers. Here three simple ways to measure
throughput are shown: file transfer, dedicated bandwidth tools, and measurement
services.

File transfer as test

A simple test is to measure how long it takes to transfer a large file. We can then
get the throughput by dividing the file size with the time it took to download.
You can use standard browser and stopwatch for this, with possibility to use
developer tools for more detailed output.

For example, ftp.funet.fi has included several files in /dev directory. There
are both null files that contain just NUL characters (byte value 0) and rnd
where the content is random bytes. There are several commands to download
such files such as by using curl, wget, and ftp commands.

Here is quick example of downloading 100 MiB of random data with curl from
Funet.

curl -o /dev/null ftp://ftp.funet.fi/dev/100Mrnd

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

100 100M 100 100M 0 0 5542k 0 0:00:18 0:00:18 --:--:-- 5571k

The output above displays that the average download speed was 5,542
kibibytes/s. For more easy-to-process output check curl --write-out documen-
tation above. If we use the curl-latency.sh script from latency measurements,
we will get following output that actually gives more resolution to the elapsed
times. Maybe add few variables like speed_download and size_download for
printout to get throughput easy?

0.024805, 0.045800, 0.067767, 18.558943

In addition, a compression test using bzip2 for 100M_type_ from Funet resulted
the original 104,857,600 byte null file to become a 5615 byte file from and

8

https://curl.haxx.se/docs/
http://www.bzip.org/

the rnd to a 103,631,335 byte file. The null file contains only single character
(NUL) while the rnd contains more random data that barely compress any.
Comparing different payload download times can be used to study if there is
any data compression on link. As much of internet traffic is now encrypted, link
compression has very little value.

Dedicated bandwidth tools

A second way for measuring the actual throughput is to use special tool like
iperf3 that allows more control on file transmission and it is not dependent on
any file or storage like file transfer by FTP. Notice that this command works in
client-server fashion, so the destination must be running iperf3 in server mode
to get the result. There are many public iperf-servers available for testing, Funet
server is one of them. By default iperf3 only sends data towards server but it
also supports reverse tests.

The iperf3 supports following command lines:

• -c host: Use server host (IP address or host name)
• -t time: Run test time seconds, by default 10 seconds.
• -R: Run test reverse (the server will send data)
• -w size: Specify TCP window size (like 128k for 128 kilobytes).
• -J: output results as JSON format for more detailed information.
• -s: Run as server. Exclusive for -c option

If you are using iperf3 on Windows host, note that there are multiple “Iperf
Windows” or “GUI Iperf” versions available where some of them are commercial
softwares.

Also note that version 3 (iperf3) is not compatible with version 2 (iperf)
servers. Basic usage is still similar. You can use either version, but the version
3 works for download tests or when connections are made behind firewall or
NAT.

iperf3 -c iperf.funet.fi

Connecting to host iperf.funet.fi, port 5201
[4] local 2a00:1190:c005:1000:7429:f4ac:fe12:5fba port 54262 connected to 2001:708:0:3::2 port 5201
[ID] Interval Transfer Bandwidth Retr Cwnd
[4] 0.00-1.00 sec 1.04 MBytes 8.72 Mbits/sec 19 20.9 KBytes
[4] 1.00-2.00 sec 251 KBytes 2.06 Mbits/sec 0 23.7 KBytes
[4] 2.00-3.00 sec 251 KBytes 2.06 Mbits/sec 1 23.7 KBytes
[4] 3.00-4.00 sec 251 KBytes 2.06 Mbits/sec 2 13.9 KBytes
[4] 4.00-5.00 sec 251 KBytes 2.06 Mbits/sec 0 22.3 KBytes
[4] 5.00-6.00 sec 251 KBytes 2.06 Mbits/sec 1 22.3 KBytes
[4] 6.00-7.00 sec 251 KBytes 2.06 Mbits/sec 2 22.3 KBytes
[4] 7.00-8.00 sec 251 KBytes 2.06 Mbits/sec 1 20.9 KBytes
[4] 8.00-9.00 sec 251 KBytes 2.06 Mbits/sec 1 20.9 KBytes
[4] 9.00-10.00 sec 251 KBytes 2.06 Mbits/sec 1 22.3 KBytes

9

https://en.wikipedia.org/wiki/JSON

- -
[ID] Interval Transfer Bandwidth Retr
[4] 0.00-10.00 sec 3.25 MBytes 2.72 Mbits/sec 28 sender
[4] 0.00-10.00 sec 2.42 MBytes 2.03 Mbits/sec receiver

iperf Done.

From the result above, we can see that the command possibly measures sev-
eral maximum throughputs which were achieved, and at the end the average
throughput is then displayed. In addition, retransmissions are also taken into
account when calculating the average throughput.

Measurement as service

In case where someone cannot afford having a Linux host with gigabit links to
run iperf, there are sites that provide measurement service. These websites
includes Nettitutka developed at Aalto University and Speedtest. Nettitutka
is focused on mobile devices and geographical information on mobile networks
while Speedtest supports also desktop browsers. Both services also provides
latency information.

10

	Introduction
	Discovering services
	NMAP

	Measuring round trip time (RTT), latency and connectivity
	PING
	Host and dig
	HPING and TCPPING
	Traceroute
	Latency measurement with curl

	Measuring network throughput
	File transfer as test
	Dedicated bandwidth tools
	Measurement as service

