T-79.5103 Computational Complexity Theory

Lecture 4: Undecidability

Aalto University
School of Science
Department of Computer Science

Spring 2016
Agenda

- Universal Turing machine
- Halting problem
- Undecidability

(C. Papadimitriou: *Computational Complexity*, Chapters 3.1–3.3)
Some Recap

- Let $L \subseteq (\Sigma - \{\sqcup\})^*$ be a language.
- A Turing machine M decides L if for every string $x \in (\Sigma - \{\sqcup\})^*$,
 if $x \in L$, then $M(x) = \text{"yes"}$ and
 if $x \notin L$, then $M(x) = \text{"no"}$.
- If L is decided by a Turing machine, L is a recursive or decidable language.
- If L is not recursive, then it is nonrecursive or undecidable.
- A Turing machine M accepts L if for every string $x \in (\Sigma - \{\sqcup\})^*$,
 if $x \in L$, then $M(x) = \text{"yes"}$ but if $x \notin L$, then $M(x) = \uparrow$.
- If L is accepted by some Turing machine, L is a recursively enumerable or semidecidable language.

Proposition

If L is recursive, then it is recursively enumerable.
1. Universal Turing Machine

- Computers are programmable ... but a TM has a fixed program which solves a single problem?
- A *universal Turing machine* U
 - takes as input a description of another Turing machine M and an input x for M, and
 - then simulates M on x so that $U(M; x) = M(x)$.
- Compare: a CPU or a virtual machine (JVM etc.)

Note: the symbols M and x are also used to denote the descriptions of M and x.
Encoding TMs using integers

- Encoding a Turing machine $M = (K, \Sigma, \delta, s)$ using integers:
 - $\Sigma = \{1, 2, \ldots, |\Sigma|\}$
 - $K = \{|\Sigma| + 1, |\Sigma| + 2, \ldots, |\Sigma| + |K|\}$
 - $s = |\Sigma| + 1$
 - $|\Sigma| + |K| + 1, |\Sigma| + |K| + 2, \ldots, |\Sigma| + |K| + 6$ encode $\leftarrow, \rightarrow, -, h, \text{“yes”}, \text{“no”}$, respectively.

- An entire TM $M = (K, \Sigma, \delta, s)$ is encoded as $b(|\Sigma|); b(|K|); e(\delta)$ where all integers i are represented as $b(i)$ with exactly $\lceil \log(|\Sigma| + |K| + 6) \rceil$ bits and $e(\delta)$ is a sequence of pairs $((q, \sigma), (p, \rho, D))$ describing the transition function δ.

Example

```
0/0, →
□/□, ←
↓/↓, →
1/1, →
```

with
```
0 1 □ ▷ s q ← → − h “yes” “no”
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
1 2 3 4 5 6 7 8 9 10 11 12
```

results in the encoding “4;2;((5,1),(5,1,8))((5,2),(5,2,8))...” i.e. “0100;0010;((0101,0001),(0101,0001,1000))((0101,0010),(0101,0010,1000))...”
The Universal Turing Machine

- \(U \) simulates \(M \) using
 a string \(S_1 \) for the description of \(M \) and \(x \), and
 a string \(S_2 \) for the current configuration \((q, w, u)\) of \(M \).

Simulation of a step of \(M \) is performed as follows:
1. Scan \(S_1 \) for the block of rules matching the current simulated state, as indicated at the beginning of \(S_2 \).
2. Scan the identified block on \(S_1 \) for the rule \(\delta \) matching the currently scanned simulated symbol, as indicated before the second semicolon on \(S_2 \).
3. Implement the rule. (When \(M \) halts, so does \(U \).)

Example

With the input 001 and the configuration \((q, \triangleright 010, \square)\)

Contents of the strings of the simulating machine:

\[
S_1 \begin{array}{c}
\triangleright 0100; 0010; ((0101, 0001), (0101, 0001, 1000))\ldots; 0001, 0001, 0010
\end{array}
\]

\[
S_2 \begin{array}{c}
\triangleright 0110; 0100, 0001, 0010, 0001; 0011
\end{array}
\]
2. The Halting Problem

- There are uncountably many languages (= decision problems), but only countably many TMs.
- There are undecidable languages (= problems).

Definition

HALTING:
INSTANCE: The description of a Turing machine M and its input x.
QUESTION: Does M halt on x?

- The corresponding language is defined as
 \[H = \{ M; x \mid M(x) \neq \rangle \}. \]
- HALTING turns out to be an undecidable problem, i.e., there is no Turing machine deciding H.
Properties of HALTING

Proposition

HALTING is recursively enumerable (r.e. for short).

Proof

A slight variant U' of the universal Turing machine U accepts H: all halting states of U are forced to be “yes” states. Then the following holds:

- If $M; x \in H$, then $M(x) \not\xrightarrow{\text{halt}}$, $U(M, x) \not\xrightarrow{\text{halt}}$, $U'(M, x) = \text{"yes"}$.
- If $M; x \not\in H$, then $M(x) = U(M, x) = U'(M, x) = \xrightarrow{\text{halt}}$.
Properties of HALTING

Proposition

HALTING is not recursive (i.e. is undecidable).

Proof

- Assume that H is recursive, i.e., some M_H decides H.
- Consider the following TM D operating on an input M:

 if $M_H(M; M) = \text{"yes"}$ then \uparrow else "yes".

- Assuming that H is recursive leads to a contradiction because there is no satisfactory result for the computation $D(D)$:

 If $D(D) \neq \uparrow$, then $M_H(D; D) = \text{"yes"}$ (since M_H decides H), leading to $D(D) = \uparrow$, a contradiction.

 Similarly, if $D(D) = \uparrow$, then $M_H(D, D) = \text{"no"}$ and $D(D) \neq \uparrow$, contradiction again.

Therefore, H is not recursive.
3. Undecidability

- HALTING spawns a range of other undecidable problems using a reduction technique.
- Assume two languages, say B and A.
- A reduction from B to A is a transformation t (computable by a Turing machine) of the input y of B to the input $t(y)$ of A such that, for all strings y, it holds that

$$y \in B \text{ if and only if } t(y) \in A$$

- In this lecture, we do not impose time or space restrictions on reductions; this will change later.
To show a problem A undecidable, it suffices to establish that if there is an algorithm (Turing machine) for deciding A, then there is an algorithm (Turing machine) for deciding HALTING.

This can be shown by devising a reduction t from HALTING to A.

This implies that A is undecidable as follows.

Suppose A were decided by a Turing machine M_A. Then H would be decided by a machine M_H that on input $M; x$

- first runs the machine M_t computing the transformation t,
- then runs M_A on the result.

In a programming notation:

$$M_H(M; x) : \ y \leftarrow M_t(M; x); \ \text{if} \ M_A(y) = \text{"yes" then } \text{"yes" else } \text{"no"}. $$
Further undecidable languages

The following languages are not recursive:

(a) \(T = \{ M \mid M \text{ halts on all inputs} \} \) (corresponds to problem TOTAL)

(b) \(\{ M; x \mid M(x) = y \text{ for some } y \} \)

(c) \(\{ M; x \mid \text{the computation of } M \text{ on input } x \text{ uses all states of } M \} \)

(d) \(\{ M; x; y \mid M(x) = y \} \)

Proof sketch for (a)

A reduction of HALTING to TOTAL:

Given input \(M; x \), consider a machine \(M^x \) that works as follows:

\(M^x(y) : \text{ if } y = x \text{ then } M(x) \text{ else } \text{halt}. \)

Define reduction mapping \(t(M; x) = M^x \). (I.e. the input \(x \) is hard-coded into the machine code of \(M \) and the result is the new code.)

Now \(M; x \in H \) iff \(M \) halts on \(x \) iff \(M^x \) halts on all inputs iff \(M^x \in T \).
A Property of HALTING

Proposition

The language H is complete for r.e. languages, i.e. any r.e. language L can be reduced to it.

Proof

Let L be any r.e. language, accepted by a TM M_L.

Then L can be reduced to H by the reduction mapping $t(x) = M_L; x$.

This holds as $x \in L$ iff $M_L(x) = "yes"$ iff $M_L(x) \neq \uparrow$ iff $M_L; x \in H$.
Properties of recursive languages

Proposition

If \(L \) is recursive, then so is \(\overline{L} \) (the complement of \(L \)).

Proposition

A language \(L \) is recursive iff both \(L \) and \(\overline{L} \) are recursively enumerable.

Proof sketch

\((\Rightarrow)\) By the previous proposition and the fact that every recursive language is also recursively enumerable.

\((\Leftarrow)\) Simulate \(M_L \) and \(M_{\overline{L}} \) on input \(x \) in an interleaved fashion:

- If \(M_L \) accepts, return “yes” and
- If \(M_{\overline{L}} \) accepts, return “no”.

The complement \(\overline{H} \) of \(H \) is not recursively enumerable.
Recursively enumerable languages

Proposition

A language \(L \) is recursively enumerable iff there is a machine \(M \) such that \(L = E(M) = \{ x \mid (s, \triangleright, \varepsilon) \xrightarrow{M}^* (q, y \sqcup x \sqcup, \varepsilon) \} \).

Any non-trivial property of Turing machines is undecidable:

Theorem (Rice’s Theorem)

Let \(C \) be a proper non-empty subset of r.e. languages. Then the following problem is undecidable: given a Turing machine \(M \), is \(L(M) \in C? \)

Here \(L(M) \) is the language accepted by a Turing machine \(M \).
Learning Objectives

- The definitions of recursive and recursively enumerable languages (including examples of such languages).
- Ability to argue that a given problem is undecidable using the reduction technique.