

PRODUCT ARCHITECTURE

Team 5:

Trung Hugo Júlia Adrià Nick Beatriz

FIRST THOUGHTS

• What do you think is the aim of product architecture?

WHAT IS PRODUCT ARCHITECTURE?

- Functional and physical elements
- Chunks
- Modularity

"The architecture of a product is the scheme by which the functional elements of the product are arranged into physical chunks and by which the chunks interact."

IMPORTANCE OF MODULARITY

Modularity

Integral architecture

- Many functional elements per chunk
- Interactions between chunks may be incidental

Modular architecture

- One or a few functional elements per chunk
- Interactions between chunks are well defined

TYPES OF MODULARITY

• Slot-modular

• Bus-modular

• Sectional-modular

IMPLICATIONS OF THE ARCHITECTURE % VS

Product change

- Customization and upgradation
- Adaptation
- Wear and consumption

Product variety

• Different product models

Product Performance

Design Standardization

- Same chunk for different products
- High volume production

Manufacturability

- Cost efficiency
- Quality control

Product Development Management

- Workload for each chunk
- Development time
- Group coordination and interaction

Which architecture offers more advantages?

	Architecture					
Product change	Modular					
Product variety	Modular					
Product performance		Integral				
Standardization	Modular					
Manufacturability	Modular					
Maintenance	Modular					
Cost efficient	Modular (standardization)	Integral (less material)				

Step 1 - Create a Schematic of the Product

- State of the product
- Elements:
 - Physical concepts
 - Functional

Step 2 - Cluster the Elements of the Schematic

- Assign each element of the schematic to a chunk
- Start considering 1 element = 1 chunk, then cluster

Step 2 - Cluster the Elements of the Schematic

There are different factors to be considered:

- Geometric integration and precision
- Function sharing
- Capabilities of vendors
- Similarity of design of production technology
- localization of change
- Accommodating variety
- Enabling standardization
- Profitability of interfaces

Step 3 - Create a Rough Geometric Layout

- Drawing, computer models or physical models
- Basic dimensional relationships among chunks
- Can create different layouts for challenging dimension relations, to then choose the one that fits best
- Linked to clustering in step two

Step 4 - Identify the Fundamental and Incidental Interactions

- Interaction between the chunks
- There are two main categories for interaction between chunks:
 - Fundamental interactions
 - Incidental interactions

Incidental interaction graph

DELAYED DIFFERENTIATION

 Postponing variant specific changes to a product until late in the supply chain First, what is early differentiation? _____When there are different versions/variants of a product______

Principles of DELAYED DIFFERENTIATION

- 1. Differentiating elements of the product must be concentrated into one or a few chunks
 - a. maximize common components and minimize chunks needed to be touched twice to keep price down
- 2. Differentiating elements can be added to the product near the end of the supply chain
 - a. product must be designed such that the changes can be added quickly to meet demand

Which of these products is a result of delayed differentiation?

DELAYED DIFFERENTIATION examples

- The chassis can still be used for a left and right hand drive vehicle
- Different models of car use this same frame
- Chassis ready to be used in a coming EV model that has not been fully developed yet

- On every vehicle the heated seats are installed but the button is missing if the package was not purchased
- Different and transmission options are both capable of fitting in the same chassis

DELAYED DIFFERENTIATION examples

 Tube should be stocked in long lengths and cut to order so that the right size is always available

 The shirt can be made in large quantities in white, and then dyed to the colors that are selling the most

DELAYED DIFFERENTIATION *interactive*

Task: Identify some opportunities for delayed differentiation

• What is a product *platform*?

Differentiation Plan

Differentiating Attributes	Sporty Coupe	Family Sedan/Station Wagon	Importance to Customer
Curvature of window glass	More curvature	Straight, vertical	•••
Styling of instrument panel	Evocative of English roadster	Highly functional	•••
Relationship between driver and instrument panel	Driver sits low to ground, distant from steering wheel, with seat reclined.	Driver sits higher, closer, more upright.	•••
Front-end styling	Shorter nose; vehicle appears to attack the road.	Longer nose, more substantial look	•••
Colors and textures	Darker colors and mix of leather and textiles	Practical surfaces and colors	••
Suspension stiffness	Stiff, for improved handling	Softer, for improved comfort	••
Interior noise	Some engine noise desirable, 70 decibels	Noise minimized, 60 decibels	•

Commonality Plan

Instrument Panel Sporty Coupe					Family Sedan/Station Wagon						gon	Comments			
Chunks Number of D Unique Parts (1		Dev (\$ r	Development Cost (\$ millions)		Tooling Cost (\$ millions)		facturing Cost	Number of Unique Parts	D ev (\$ 1	velopment Cost Tooling Cost millions) (\$ millions)		ing Cost nillions)	Manufacturing Cost)		
HVAC system	45	\$	4	\$	9	\$	202	35	\$	3.8	\$	7.5	\$	200	Duct work and support structure different Share motors and other components.
Dash cover and structure	52	\$	4	\$	7	\$	123	48	\$	3.8	\$	6.5	\$	120	Share some brackets and components.
Electrical equipment	115	\$	4	\$	2.2	\$	420	65	\$	2	\$	2.1	\$	430	Share switches, wiring, and central module.
Cross-car beam	12	\$	2	\$	2	\$	35	12	\$	2	\$	2	\$	35	Cross-car beam entirely different.
Steering system and airbags	26	\$	2	\$	0.1	\$	200	26	\$	2	\$	0.1	\$	195	All components different.
Instruments and gauges	16	\$	1	\$	0.2	\$	22	13	\$	0.8	\$	0.2	\$	20	Can share some instruments.
Molding and trim	10	\$	0.4	\$	0.2	\$	11	10	\$	0.4	\$	0.2	\$	10	All molding and trim different.
Insulation	3	\$	0.2	\$	0.2	\$	8	1	\$	0.1	\$	0	\$	10	Change insulation in coupe to let in more engine noise.
Audio and radio	8	\$	0.2	\$	0	\$	300	0	\$	0	\$	0	\$	300	Same radio option in all vehicles.
Total	287	\$	17.8	\$	20.8	\$	1,321	210	\$	14.9	\$	18.5	\$	1,320	

- How do we solve the tension between the differentiation and the commonality plan?
 - Platform planning decisions should be informed by quantitative estimates of cost and revenue implications.
 - Iteration is beneficial.
 - Modular architecture

Related System-Level design Issues

• Defining Secondary Systems

Related System-Level design Issues

• Define the Architecture of the Chunks

Related System-Level design Issues

• Creating Detailed Interface Specifications

Line	Name	Properties					
1	PWR-A	+12VDC, 5mA					
2	PWR-B	+5VDC, 10mA					
3	STAT	TTL					
4	LVL	100ΚΩ-1ΜΩ					
5	PRNT1	TTL					
6	PRNT2	TTL					
7	PRNT3	TTL					
8	PRNT4	TTL					
9	PRNT5	TTL					
10	PRNT6	TTL					
11	GND						

	1	_
Black Print Cartridge		Logic Board

What does the Future holds for Product Architecture?

Degenerative Design

Virtual Reality and Augmented Reality

3D printing

Overview

ARCHITECTURE DETERMINES

-Ease of production variety

- -Feasibility of further modifications in products
- -Production costs

KEY CONCEPTS

-Four-Step Method for establishing the product architecture

-Modular vs. Integral architecture

-Inputs from marketing, manufacturing, and design are essential