ELEC-E8116 Model Based Control Systems /exercise 1

Problem 1:

Let $f(x)$ be a scalar-valued function of the vector x and let A be a square matrix with an appropriate dimension. By using a simple example, study what kind of a function $f(x)=x^{T} A x$ is. Demonstrate that

$$
\frac{d(A x)}{d x}=A \quad \text { and } \quad \frac{d f(x)}{d x}=\underline{x}^{T}\left(A+A^{T}\right)
$$

when the gradient is considered to be a row vector (in the literature the gradient is sometimes regarded as a row vector and sometimes as a column vector).

Problem 2

Now consider the gradient of $f(x)$ as a column vector. Show by a simple example that

$$
\frac{d(A x)}{d x}=A^{T} \quad \frac{d\left(x^{T} A x\right)}{d x}=\left(A+A^{T}\right) x
$$

Problem 3

Show that $x^{T}\left(A-A^{T}\right) x=0$ holds, when x is a vector and A is a square matrix with an appropriate dimension.

Problem 4

Let the criterion to be minimized be given as

$$
J=\int_{0}^{T}\left\{x(t)^{\prime} P x(t)+u(t)^{\prime} Q u(t)\right\} d t
$$

where ' denotes the transpose. Show that without loss of generality the square matrices P and Q can always be chosen as symmetric matrices.

Problem 5

Let A, B, C and D be $n \mathrm{x} n, n \mathrm{x} m, m \mathrm{x} n, m \mathrm{x} m$ matrices. Prove the so-called matrixinverion lemma

$$
(A+B D C)^{-1}=A^{-1}-A^{-1} B\left(D^{-1}+C A^{-1} B\right)^{-1} C A^{-1}
$$

where it is assumed that all inverse matrices exist.

