Aalto University
School of Electrical
Engineering

## Recap of Matrix Computations

Fatemeh Yaghoobi

Aalto University
2022

## Contents

Basic Concepts and Notation
Basic Notation

## Vectors

## Matrices

Matrix-Vector Products
Matrix-Matrix Products
Operations and Properties
Solving Linear Equations
Cholesky decomposition

## Matrix Calculus

Gradient
Jacobian
Linear and affine functions

## Basic Concepts and Notation

Linear algebra provides a way of compactly representing and operating on sets of linear equations.

- For example, consider the following system of equations:

$$
\begin{aligned}
4 x_{1}-5 x_{2} & =-13 \\
-2 x_{1}+3 x_{2} & =9
\end{aligned}
$$

## Basic Concepts and Notation

Linear algebra provides a way of compactly representing and operating on sets of linear equations.

- For example, consider the following system of equations:

$$
\begin{aligned}
4 x_{1}-5 x_{2} & =-13 \\
-2 x_{1}+3 x_{2} & =9
\end{aligned}
$$

- Solving the system of 2 equations and 2 variables.


## Basic Concepts and Notation

Linear algebra provides a way of compactly representing and operating on sets of linear equations.

- For example, consider the following system of equations:

$$
\begin{aligned}
4 x_{1}-5 x_{2} & =-13 \\
-2 x_{1}+3 x_{2} & =9
\end{aligned}
$$

- Solving the system of 2 equations and 2 variables.
- Compact form: $\mathbf{A x}=\mathbf{b}$

$$
\mathbf{A}=\left[\begin{array}{cc}
4 & -5 \\
-2 & 3
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
-13 \\
9
\end{array}\right]
$$

## Basic Concepts and Notation

Linear algebra provides a way of compactly representing and operating on sets of linear equations.

- For example, consider the following system of equations:

$$
\begin{aligned}
4 x_{1}-5 x_{2} & =-13 \\
-2 x_{1}+3 x_{2} & =9
\end{aligned}
$$

- Solving the system of 2 equations and 2 variables.
- Compact form: $\mathbf{A x}=\mathbf{b}$

$$
\mathbf{A}=\left[\begin{array}{cc}
4 & -5 \\
-2 & 3
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
-13 \\
9
\end{array}\right]
$$

- What are the advantages of analyzing linear equations in this form?


## Basic Notation

- Scalars: Quantities that are fully described by a magnitude (or numerical value) alone. Scalars are italic ( $a, b, \ldots$ )


## Basic Notation

- Scalars: Quantities that are fully described by a magnitude (or numerical value) alone. Scalars are italic ( $a, b, \ldots$ )
- $\mathbf{A} \in \mathbb{R}^{d_{m} \times d_{n}}$ : a matrix with $d_{m}$ rows and $d_{n}$ columns, where the entries of $\mathbf{A}$ are real numbers. (Matrices are bold uppercase).


## Basic Notation

- Scalars: Quantities that are fully described by a magnitude (or numerical value) alone. Scalars are italic ( $a, b, \ldots$ )
- $\mathbf{A} \in \mathbb{R}^{d_{m} \times d_{n}}$ : a matrix with $d_{m}$ rows and $d_{n}$ columns, where the entries of $\mathbf{A}$ are real numbers. (Matrices are bold uppercase).
$-\mathbf{x} \in \mathbb{R}^{d_{n}}$ : a vector with $d_{n}$ entries. (Vectors are bold lowercase).


## Basic Notation

- Scalars: Quantities that are fully described by a magnitude (or numerical value) alone. Scalars are italic ( $a, b, \ldots$ )
- $\mathbf{A} \in \mathbb{R}^{d_{m} \times d_{n}}$ : a matrix with $d_{m}$ rows and $d_{n}$ columns, where the entries of $\mathbf{A}$ are real numbers. (Matrices are bold uppercase).
$-\mathbf{x} \in \mathbb{R}^{d_{n}}$ : a vector with $d_{n}$ entries. (Vectors are bold lowercase).
- Column vector: an $d_{n}$-dimensional vector is often thought of as a matrix with $d_{n}$ rows and 1 column.


## Basic Notation

- Scalars: Quantities that are fully described by a magnitude (or numerical value) alone. Scalars are italic ( $a, b, \ldots$ )
- $\mathbf{A} \in \mathbb{R}^{d_{m} \times d_{n}}$ : a matrix with $d_{m}$ rows and $d_{n}$ columns, where the entries of $\mathbf{A}$ are real numbers. (Matrices are bold uppercase).
$-\mathrm{x} \in \mathbb{R}^{d_{n}}$ : a vector with $d_{n}$ entries. (Vectors are bold lowercase).
- Column vector: an $d_{n}$-dimensional vector is often thought of as a matrix with $d_{n}$ rows and 1 column.
- Row vector: a matrix with 1 row and $d_{n}$ columns - we typically write $\mathbf{x}^{T}$ (here $\mathbf{x}^{T}$ denotes the transpose of $\mathbf{x}$, which we will define shortly).


## Vectors

- A 3-dimensional vector $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ has 3 elements $v_{1}, v_{2}, v_{3}$ as in

$$
\mathbf{v}=\left[\begin{array}{l}
2 \\
4 \\
1
\end{array}\right]
$$

## Vectors

- A 3-dimensional vector $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ has 3 elements $v_{1}, v_{2}, v_{3}$ as in $\mathbf{v}=\left[\begin{array}{l}2 \\ 4 \\ 1\end{array}\right]$
- Number of elements is the dimension of the vector


## Vectors

- A 3-dimensional vector $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ has 3 elements $v_{1}, v_{2}, v_{3}$ as in

$$
\mathbf{v}=\left[\begin{array}{l}
2 \\
4 \\
1
\end{array}\right]
$$

- Number of elements is the dimension of the vector
- We use bold symbols to denote vectors, e.g., $\mathbf{v}, \mathbf{x}, \ldots$


## Vectors

- A 3-dimensional vector $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ has 3 elements $v_{1}, v_{2}, v_{3}$ as in

$$
\mathbf{v}=\left[\begin{array}{l}
2 \\
4 \\
1
\end{array}\right]
$$

- Number of elements is the dimension of the vector
- We use bold symbols to denote vectors, e.g., $\mathbf{v}, \mathbf{x}, \ldots$
- We add vectors $\mathbf{v}+\mathbf{w}$. We multiply them by numbers (scalars) like $c=4$ and $d=0$

$$
\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]+\left[\begin{array}{c}
2 \\
0 \\
-2
\end{array}\right]=\left[\begin{array}{l}
5 \\
4 \\
3
\end{array}\right], 4\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]=\left[\begin{array}{c}
12 \\
16 \\
20
\end{array}\right], \quad 0\left[\begin{array}{c}
2 \\
0 \\
-2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

## Vectors

- Ones vector: $d_{n}$-dimensional vector with all entries 1


## Vectors

- Ones vector: $d_{n}$-dimensional vector with all entries 1
- Unit vector: a unit vector has one entry 1 and all others 0 denoted $\mathbf{e}_{i}$ where $i$ is entry that is 1


## Vectors

- Ones vector: $d_{n}$-dimensional vector with all entries 1
- Unit vector: a unit vector has one entry 1 and all others 0 denoted $\mathbf{e}_{i}$ where $i$ is entry that is 1
- Linear combinations: for $d_{n}$-dimensional vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ and scalars $\beta_{1}, \ldots, \beta_{m}$,

$$
\beta_{1} \mathbf{v}_{1}+\ldots+\beta_{m} \mathbf{v}_{m}
$$

is a linear combination of the vectors

$$
1\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+2\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]+4\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
11 \\
10 \\
13
\end{array}\right]
$$

## Vectors

- Ones vector: $d_{n}$-dimensional vector with all entries 1
- Unit vector: a unit vector has one entry 1 and all others 0 denoted $\mathbf{e}_{i}$ where $i$ is entry that is 1
- Linear combinations:
for $d_{n}$-dimensional vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ and scalars $\beta_{1}, \ldots, \beta_{m}$,

$$
\beta_{1} \mathbf{v}_{1}+\ldots+\beta_{m} \mathbf{v}_{m}
$$

is a linear combination of the vectors

$$
1\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+2\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]+4\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
11 \\
10 \\
13
\end{array}\right]
$$

- Sometimes a combination gives the zero vector. Then the vectors are linearly dependent
$-1\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]+2\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]-1\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]$


## Vectors

- Dot Products $\mathbf{v} \cdot \mathbf{w}$ or $\mathbf{v}^{\top} \mathbf{w}$

$$
\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]=3 \times 2+4 \times 0+5 \times 1=11 \boxed{\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}}
$$

## Vectors

- Dot Products $\mathbf{v} \cdot \mathbf{w}$ or $\mathbf{v}^{\top} \mathbf{w}$

$$
\begin{aligned}
& {[ \begin{array} { l } 
{ 3 } \\
{ 4 } \\
{ 5 }
\end{array} ] \cdot [ \begin{array} { l } 
{ 2 } \\
{ 0 } \\
{ 1 }
\end{array} ] = 3 \times 2 + 4 \times 0 + 5 \times 1 = 1 1 \longdiv { \mathbf { v } \cdot \mathbf { w } = \mathbf { w } \cdot \mathbf { v } }} \\
& \mathbf{e}_{\mathbf{i}}{ }^{\top} \mathbf{v}=v_{i} \text { (picks out the } \text { ith entry) }
\end{aligned}
$$

## Vectors

- Dot Products $\mathbf{v} \cdot \mathbf{w}$ or $\mathbf{v}^{\top} \mathbf{w}$



## Vectors

- Dot Products $\mathbf{v} \cdot \mathbf{w}$ or $\mathbf{v}^{\top} \mathbf{w}$

$-\mathbf{e}_{\mathbf{i}}{ }^{\top} \mathbf{v}=v_{i}$ (picks out the ith entry)
- $\mathbf{1}^{\top} \mathbf{v}=v_{1}+\ldots+v_{n}$
- Length squared of $\mathbf{v}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$ is $\mathbf{v} \cdot \mathbf{v}=\mathbf{v}^{\top} \mathbf{v}=3^{2}+4^{2}=9+16$


## Vectors

- Dot Products $\mathbf{v} \cdot \mathbf{w}$ or $\mathbf{v}^{\top} \mathbf{w}$

$$
\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]=3 \times 2+4 \times 0+5 \times 1=11 \boxed{\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}}
$$

- $\mathbf{e}_{\mathbf{i}}{ }^{\top} \mathbf{v}=v_{i}$ (picks out the ith entry)
- $\mathbf{1}^{\top} \mathbf{v}=v_{1}+\ldots+v_{n}$
- Length squared of $\mathbf{v}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$ is $\mathbf{v} \cdot \mathbf{v}=\mathbf{v}^{\top} \mathbf{v}=3^{2}+4^{2}=9+16$
- The dot product $\mathbf{v} \cdot \mathbf{w}$ reveals the angle $\theta$ between $\mathbf{v}$ and $\mathbf{w}$ :
$\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta$,


## Vectors

- Dot Products $\mathbf{v} \cdot \mathbf{w}$ or $\mathbf{v}^{\top} \mathbf{w}$
$\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right] \cdot\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]=3 \times 2+4 \times 0+5 \times 1=11 \boxed{\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}}$
- $\mathbf{e}_{\mathbf{i}}{ }^{\top} \mathbf{v}=v_{i}$ (picks out the ith entry)
- $\mathbf{1}^{\top} \mathbf{v}=v_{1}+\ldots+v_{n}$
- Length squared of $\mathbf{v}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$ is $\mathbf{v} \cdot \mathbf{v}=\mathbf{v}^{\top} \mathbf{v}=3^{2}+4^{2}=9+16$
- The dot product $\mathbf{v} \cdot \mathbf{w}$ reveals the angle $\theta$ between $\mathbf{v}$ and $\mathbf{w}$ :
$\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta$,
- The angle between $\mathbf{v}=\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{c}-1 \\ 2 \\ 2\end{array}\right]$ is $\theta=90^{\circ}$ because $\mathbf{v} \cdot \mathbf{w}=0$


## Vectors

- Norm: norm of a vector $\|\mathrm{x}\|$ is a measure of the "length" of the vector.
For example, Euclidean or $l_{2}$ norm: $\|\mathbf{x}\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$
The $l_{1}$ norm: $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$


## Matrices

- Matrices Multiplying Vectors:

There is a row way to multiply $\mathbf{A x}$ and also a column way to compute the vector $\mathbf{A x}$

## Matrices

- Matrices Multiplying Vectors:

There is a row way to multiply $\mathbf{A x}$ and also a column way to compute the vector Ax

- Row way $=$ Dot product of vector x with each row of $\mathbf{A}$

$$
\mathbf{A} \mathbf{x}=\left[\begin{array}{ll}
2 & 5 \\
3 & 7
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
2 v_{1}+5 v_{2} \\
3 v_{1}+7 v_{2}
\end{array}\right] \quad\left[\begin{array}{ll}
2 & 5 \\
3 & 7
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
7 \\
10
\end{array}\right]
$$

## Matrices

- Matrices Multiplying Vectors:

There is a row way to multiply Ax and also a column way to compute the vector Ax

- Row way = Dot product of vector x with each row of $\mathbf{A}$

$$
\mathbf{A} \mathbf{x}=\left[\begin{array}{ll}
2 & 5 \\
3 & 7
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
2 v_{1}+5 v_{2} \\
3 v_{1}+7 v_{2}
\end{array}\right] \quad\left[\begin{array}{ll}
2 & 5 \\
3 & 7
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
7 \\
10
\end{array}\right]
$$

- Column way $=\mathbf{A x}$ is a combination of the columns of $\mathbf{A}$

$$
\mathbf{A} \mathbf{x}=\left[\begin{array}{ll}
2 & 5 \\
3 & 7
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=v_{1}\left[\begin{array}{c}
\text { column } \\
1
\end{array}\right]+v_{2}\left[\begin{array}{c}
\text { column } \\
2
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
2 & 5 \\
3 & 7
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]+\left[\begin{array}{l}
5 \\
7
\end{array}\right]=\left[\begin{array}{c}
7 \\
10
\end{array}\right]
$$

## Matrices

- The identity matrix has $\mathbf{I x}=\mathbf{x}$ for every $\mathbf{x}$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

## Matrices

- The identity matrix has $\mathbf{I x}=\mathbf{x}$ for every $\mathbf{x}$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

- Dependent and Independent Columns

The columns of $\mathbf{A}$ are "dependent" if one column is a linear combination of the other columns
Or $\mathbf{A x}=\mathbf{0}$ for some vector $\mathbf{x}$ (other than $\mathbf{x}=\mathbf{0}$ )

$$
\begin{aligned}
& \mathbf{A}_{1}=\left[\begin{array}{ll}
1 & 2 \\
2 & 4 \\
1 & 2
\end{array}\right] \text { Reason: Column } 2 \text { of } \mathbf{A}_{1}=2(\text { Column } 1) \\
& \mathbf{A}_{2}=\left[\begin{array}{lll}
1 & 4 & 0 \\
2 & 5 & 0 \\
3 & 6 & 0
\end{array}\right] \text { Reason: } \mathbf{A}_{2} \text { times } \mathbf{x}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \text { gives }\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

## Matrices

- The columns of $\mathbf{A}$ are "independent" if no column is a linear combination of the other columns Another way to say it : Ax = $\mathbf{0}$ only when $\mathbf{x}=\mathbf{0}$

$$
\mathbf{A}_{3}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 9
\end{array}\right] \text { and } \mathbf{A}_{4}=\mathbf{I}
$$

## Matrices: matrix-matrix multiplication AB

There are 4 ways to multiply matrices.

1. (Row $i$ of $\mathbf{A}$ ) • (Column $j$ of $\mathbf{B}$ ) produces one number: row $i$, column $j$ of $\mathbf{A B}$
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}5 & 7 \\ 6 & 8\end{array}\right]=\left[\begin{array}{cc}17 & . \\ . & .\end{array}\right]$
because $\left[\begin{array}{ll}1 & 2\end{array}\right]\left[\begin{array}{l}5 \\ 6\end{array}\right]=17$ Dot product

## Matrices: matrix-matrix multiplication AB

There are 4 ways to multiply matrices.

1. (Row $i$ of $\mathbf{A}$ ) • (Column $j$ of $\mathbf{B}$ ) produces one number: row $i$, column $j$ of $\mathbf{A B}$
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}5 & 7 \\ 6 & 8\end{array}\right]=\left[\begin{array}{cc}17 & . \\ . & .\end{array}\right]$
because $\left[\begin{array}{ll}1 & 2\end{array}\right]\left[\begin{array}{l}5 \\ 6\end{array}\right]=17$ Dot product
2. (Matrix A) (Column $j$ of $\mathbf{B}$ ) produces column $j$ of $\mathbf{A B}$ : Combine columns of $\mathbf{A}$
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}\mathbf{5} & 7 \\ \mathbf{6} & 8\end{array}\right]=\left[\begin{array}{ll}\mathbf{1 7} & . \\ \mathbf{3 9} & .\end{array}\right]$
because $5\left[\begin{array}{l}1 \\ 3\end{array}\right]+6\left[\begin{array}{l}2 \\ 4\end{array}\right]=\left[\begin{array}{l}17 \\ 39\end{array}\right] \quad$ Linear combinations.

## Matrices: matrix-matrix Products AB

3. (Row $i$ of $\mathbf{A}$ ) (Matrix $\mathbf{B}$ ) produces row $i$ of $\mathbf{A B}$ : Combine rows of B
$\left[\begin{array}{ll}\mathbf{1} & \mathbf{2} \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}5 & 7 \\ 6 & 8\end{array}\right]=\left[\begin{array}{cc}\mathbf{1 7} & \mathbf{2 3} \\ \cdot & \cdot\end{array}\right]$
because $1\left[\begin{array}{ll}5 & 7\end{array}\right]+2\left[\begin{array}{ll}6 & 8\end{array}\right]=\left[\begin{array}{ll}17 & 23\end{array}\right]$

## Matrices: matrix-matrix Products AB

3. (Row $i$ of $\mathbf{A}$ ) (Matrix $\mathbf{B}$ ) produces row $i$ of $\mathbf{A B}$ : Combine rows of B
$\left[\begin{array}{ll}\mathbf{1} & \mathbf{2} \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}5 & 7 \\ 6 & 8\end{array}\right]=\left[\begin{array}{cc}\mathbf{1 7} & \mathbf{2 3} \\ \cdot & \cdot\end{array}\right]$
because $1\left[\begin{array}{ll}5 & 7\end{array}\right]+2\left[\begin{array}{ll}6 & 8\end{array}\right]=\left[\begin{array}{ll}17 & 23\end{array}\right]$
4. (Column $k$ of $\mathbf{A}$ ) (Row $k$ of $\mathbf{B}$ ) produces a matrix: Add these matrices!
$\left[\begin{array}{l}1 \\ 3\end{array}\right]\left[\begin{array}{ll}5 & 7\end{array}\right]=\left[\begin{array}{cc}5 & 7 \\ 15 & 21\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 4\end{array}\right]\left[\begin{array}{ll}6 & 8\end{array}\right]=\left[\begin{array}{ll}12 & 16 \\ 24 & 32\end{array}\right]$
Now add: $\mathbf{A B}=\left[\begin{array}{cc}17 & 23 \\ 39 & 53\end{array}\right] \quad$ Outer product

## Operations and Properties

- Transpose of $\mathbf{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 4\end{array}\right]$ is $\mathbf{A}^{\top}=\left[\begin{array}{ll}1 & 0 \\ 2 & 0 \\ 3 & 4\end{array}\right]$

$$
\left(\mathbf{A}^{\top}\right)_{i j}=\mathbf{A}_{j i}
$$

## Operations and Properties

- Transpose of $\mathbf{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 4\end{array}\right]$ is $\mathbf{A}^{\top}=\left[\begin{array}{ll}1 & 0 \\ 2 & 0 \\ 3 & 4\end{array}\right]$

$$
\left(\mathbf{A}^{\top}\right)_{i j}=\mathbf{A}_{j i}
$$

- Rules for sum and product
Transpose of $\mathbf{A}+\mathbf{B}$ is $\mathbf{A}^{\top}+\mathbf{B}^{\top}$

Transpose of $\mathbf{A B}$ is $\mathbf{B}^{\top} \mathbf{A}^{\top}$

## Operations and Properties

- Transpose of $\mathbf{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 4\end{array}\right]$ is $\mathbf{A}^{\top}=\left[\begin{array}{ll}1 & 0 \\ 2 & 0 \\ 3 & 4\end{array}\right]$

$$
\left(\mathbf{A}^{\top}\right)_{i j}=\mathbf{A}_{j i}
$$

- Rules for sum and product
Transpose of $\mathbf{A}+\mathbf{B}$ is $\mathbf{A}^{\top}+\mathbf{B}^{\top}$

Transpose of $\mathbf{A B}$ is $\mathbf{B}^{\top} \mathbf{A}^{\top}$

- A symmetric matrix has $\mathbf{S}^{\top}=\mathbf{S}$ means $s_{i j}=s_{j i}$


## Operations and Properties

- Determinant: The determinant of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, is a function det : $\mathbb{R}^{n \times n} \rightarrow \mathbb{R}$, and is denoted as $|\mathbf{A}|$ or $\operatorname{det} \mathbf{A}$ The equations for determinants of matrices up to size $3 \times 3$ :

$$
\begin{aligned}
&\left|\left[a_{11}\right]\right|=a_{11} \\
&\left|\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\right|=a_{11} a_{22}-a_{12} a_{21} \\
&\left|\left[\begin{array}{rrr}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\right|=\begin{array}{r}
a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}
\end{array} \\
&-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}
\end{aligned}
$$

## Operations and Properties

- Positive definite: A symmetric matrix $\mathbf{A}$ is positive definite (PD) if for all non-zero vectors $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{x}^{T} \mathbf{A} \mathbf{x}>0$. This is usually denoted as $\mathbf{A}>0$.


## Operations and Properties

- Positive definite: A symmetric matrix A is positive definite (PD) if for all non-zero vectors $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{x}^{T} \mathbf{A x}>0$. This is usually denoted as $\mathbf{A}>0$.
- Positive semidefinite: A symmetric matrix $\mathbf{A}$ is positive semidefinite (PSD) if for all vectors $\mathbf{x} \in R^{n}, \mathbf{x}^{T} \mathbf{A} \mathbf{x} \geq 0$. This is usually denoted as $\mathbf{A} \geq 0$.


## Operations and Properties

- Positive definite: A symmetric matrix A is positive definite (PD) if for all non-zero vectors $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{x}^{T} \mathbf{A} \mathbf{x}>0$. This is usually denoted as $\mathbf{A}>0$.
- Positive semidefinite: A symmetric matrix $\mathbf{A}$ is positive semidefinite (PSD) if for all vectors $\mathbf{x} \in R^{n}, \mathbf{x}^{T} \mathbf{A} \mathbf{x} \geq 0$. This is usually denoted as $\mathbf{A} \geq 0$.
- Negative definite: A symmetric matrix $\mathbf{A}$ is negative definite (ND) if for all non-zero vectors $\mathbf{x} \in R^{n}, \mathbf{x}^{T} \mathbf{A} \mathbf{x}<0$. This is usually denoted as $\mathbf{A}<0$.


## Operations and Properties

- Positive definite: A symmetric matrix A is positive definite (PD) if for all non-zero vectors $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{x}^{T} \mathbf{A} \mathbf{x}>0$. This is usually denoted as $\mathbf{A}>0$.
- Positive semidefinite: A symmetric matrix $\mathbf{A}$ is positive semidefinite (PSD) if for all vectors $\mathbf{x} \in R^{n}, \mathbf{x}^{T} \mathbf{A} \mathbf{x} \geq 0$. This is usually denoted as $\mathbf{A} \geq 0$.
- Negative definite: A symmetric matrix $\mathbf{A}$ is negative definite (ND) if for all non-zero vectors $\mathbf{x} \in R^{n}, \mathbf{x}^{T} \mathbf{A} \mathbf{x}<0$. This is usually denoted as $\mathbf{A}<0$.
- Negative semidefinite: A symmetric matrix $\mathbf{A}$ is negative semidefinite (NSD) if for all vectors $\mathbf{x} \in R^{n}, \mathbf{x}^{T} \mathbf{A} \mathbf{x} \leq 0$. This is usually denoted as $\mathbf{A} \leq 0$.


## Solving Linear Equations

$$
\mathbf{A x}=\mathbf{b}: \mathbf{A} \text { is } n \text { by } n
$$

- Inverse Matrices $\mathbf{A}^{-1}$ and Solutions $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$

The inverse of a square matrix $\mathbf{A}$ has $\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$ and $\mathbf{A A}^{-1}=\mathbf{I}$
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]^{-1}$
A has no inverse if $a d-b c=0$

## Solving Linear Equations

$$
\mathbf{A x}=\mathbf{b}: \mathbf{A} \text { is } n \mathbf{b y} n
$$

- Inverse Matrices $\mathbf{A}^{-1}$ and Solutions $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$

The inverse of a square matrix $\mathbf{A}$ has $\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$ and $\mathbf{A A}^{-1}=\mathbf{I}$
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]^{-1}$
A has no inverse if $a d-b c=0$

- Invertible $\Leftrightarrow$ Rows are independent $\Leftrightarrow$ Columns are independent.


## Solving Linear Equations

$$
\mathbf{A x}=\mathbf{b}: \mathbf{A} \text { is } n \mathbf{b y} n
$$

- Inverse Matrices $\mathbf{A}^{-1}$ and Solutions $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$

The inverse of a square matrix $\mathbf{A}$ has $\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$ and $\mathbf{A A}^{-1}=\mathbf{I}$
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]^{-1}$
A has no inverse if $a d-b c=0$

- Invertible $\Leftrightarrow$ Rows are independent $\Leftrightarrow$ Columns are independent.
- Invertible $\Leftrightarrow$ The only solution to $\mathbf{A x}=\mathbf{b}$ is $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$


## Solving Linear Equations

$$
\mathbf{A x}=\mathbf{b}: \mathbf{A} \text { is } n \text { by } n
$$

- Inverse Matrices $\mathbf{A}^{-1}$ and Solutions $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$

The inverse of a square matrix $\mathbf{A}$ has $\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$ and $\mathbf{A A}^{-1}=\mathbf{I}$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]^{-1}
$$

A has no inverse if $a d-b c=0$

- Invertible $\Leftrightarrow$ Rows are independent $\Leftrightarrow$ Columns are independent.
- Invertible $\Leftrightarrow$ The only solution to $\mathbf{A x}=\mathbf{b}$ is $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$
- Computing $\mathbf{A}^{-1}$ is not efficient for $\mathbf{A x}=\mathbf{b}$. Use: elimination.


## Solving Linear Equations

$$
\mathbf{A x}=\mathbf{b}: \mathbf{A} \text { is } n \text { by } n
$$

Elimination : Square Matrix A to Triangular U

$$
\begin{aligned}
\mathbf{A}= & {\left[\begin{array}{ccc}
2 & 3 & 4 \\
4 & 11 & 14 \\
2 & 8 & 17
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & 3 & 4 \\
0 & 5 & 6 \\
2 & 8 & 17
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & 3 & 4 \\
0 & 5 & 6 \\
0 & 5 & 13
\end{array}\right] \rightarrow } \\
& {\left[\begin{array}{lcc}
2 & 3 & 4 \\
0 & 5 & 6 \\
0 & 0 & 7
\end{array}\right]=U }
\end{aligned}
$$

## Solving Linear Equations

$$
\mathbf{A x}=\mathbf{b}: \mathbf{A} \text { is } n \text { by } n
$$

- Elimination : Square Matrix A to Triangular U

$$
\begin{aligned}
\mathbf{A}= & {\left[\begin{array}{ccc}
2 & 3 & 4 \\
4 & 11 & 14 \\
2 & 8 & 17
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & 3 & 4 \\
0 & 5 & 6 \\
2 & 8 & 17
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & 3 & 4 \\
0 & 5 & 6 \\
0 & 5 & 13
\end{array}\right] \rightarrow } \\
& {\left[\begin{array}{lcc}
2 & 3 & 4 \\
0 & 5 & 6 \\
0 & 0 & 7
\end{array}\right]=U }
\end{aligned}
$$

- One elimination step subtracts $l_{i j}$ times row $j$ from row $i(i>j)$


## Solving Linear Equations $\mathrm{Ax}=\mathrm{b}: \mathbf{A}$ is $n$ by $n$

- Elimination : Square Matrix A to Triangular U

$$
\begin{aligned}
\mathbf{A}= & {\left[\begin{array}{ccc}
2 & 3 & 4 \\
4 & 11 & 14 \\
2 & 8 & 17
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & 3 & 4 \\
0 & 5 & 6 \\
2 & 8 & 17
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & 3 & 4 \\
0 & 5 & 6 \\
0 & 5 & 13
\end{array}\right] \rightarrow } \\
& {\left[\begin{array}{lcc}
2 & 3 & 4 \\
0 & 5 & 6 \\
0 & 0 & 7
\end{array}\right]=U }
\end{aligned}
$$

- One elimination step subtracts $l_{i j}$ times row $j$ from row $i(i>j)$
- Each step produces a zero below the diagonal of $\mathbf{U}: l_{21}=2, l_{31}=l_{32}=1$


## Solving Linear Equations $\mathrm{Ax}=\mathrm{b}$ : $\mathbf{A}$ is $n$ by $n$

- Elimination : Square Matrix A to Triangular U

$$
\begin{aligned}
\mathbf{A}= & {\left[\begin{array}{ccc}
2 & 3 & 4 \\
4 & 11 & 14 \\
2 & 8 & 17
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & 3 & 4 \\
0 & 5 & 6 \\
2 & 8 & 17
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & 3 & 4 \\
0 & 5 & 6 \\
0 & 5 & 13
\end{array}\right] \rightarrow } \\
& {\left[\begin{array}{lcc}
2 & 3 & 4 \\
0 & 5 & 6 \\
0 & 0 & 7
\end{array}\right]=U }
\end{aligned}
$$

- One elimination step subtracts $l_{i j}$ times row $j$ from row $i(i>j)$
- Each step produces a zero below the diagonal of $\mathbf{U}: l_{21}=2, l_{31}=l_{32}=1$
- Elimination produced no zeros on the diagonal and created 3 zeros in U.


## Solving Linear Equations

$$
\mathbf{A x}=\mathrm{b}: \mathbf{A} \text { is } n \text { by } n
$$

- For $\mathbf{A x}=\mathbf{b}$ add extra column $\mathbf{b}$, Elimination and back substitution

$$
\left[\begin{array}{ll}
\mathbf{A} & \mathbf{b}
\end{array}\right]=\left[\begin{array}{cccc}
2 & 3 & 4 & 19 \\
4 & 11 & 14 & 55 \\
2 & 8 & 17 & 50
\end{array}\right] \rightarrow\left[\begin{array}{ll}
\mathbf{U} & \mathbf{c}
\end{array}\right]=\left[\begin{array}{llll}
2 & 3 & 4 & 19 \\
0 & 5 & 6 & 17 \\
0 & 0 & 7 & 14
\end{array}\right]
$$

## Solving Linear Equations

$$
\mathbf{A} \mathbf{x}=\mathbf{b}: \mathbf{A} \text { is } n \text { by } n
$$

- For $\mathbf{A x}=\mathbf{b}$ add extra column $\mathbf{b}$, Elimination and back substitution

$$
\left[\begin{array}{ll}
\mathbf{A} & \mathbf{b}
\end{array}\right]=\left[\begin{array}{cccc}
2 & 3 & 4 & 19 \\
4 & 11 & 14 & 55 \\
2 & 8 & 17 & 50
\end{array}\right] \rightarrow\left[\begin{array}{ll}
\mathbf{U} & \mathbf{c}
\end{array}\right]=\left[\begin{array}{cccc}
2 & 3 & 4 & 19 \\
0 & 5 & 6 & 17 \\
0 & 0 & 7 & 14
\end{array}\right]
$$

- Back substitution: The last equation $7 x_{3}=14$ gives $x_{3}=2$


## Solving Linear Equations

$$
\mathbf{A} \mathbf{x}=\mathbf{b}: \mathbf{A} \text { is } n \text { by } n
$$

- For $\mathbf{A x}=\mathbf{b}$ add extra column $\mathbf{b}$, Elimination and back substitution

$$
\left[\begin{array}{ll}
\mathbf{A} & \mathbf{b}
\end{array}\right]=\left[\begin{array}{cccc}
2 & 3 & 4 & 19 \\
4 & 11 & 14 & 55 \\
2 & 8 & 17 & 50
\end{array}\right] \rightarrow\left[\begin{array}{ll}
\mathbf{U} & \mathbf{c}
\end{array}\right]=\left[\begin{array}{cccc}
2 & 3 & 4 & 19 \\
0 & 5 & 6 & 17 \\
0 & 0 & 7 & 14
\end{array}\right]
$$

- Back substitution: The last equation $7 x_{3}=14$ gives $x_{3}=2$
- Work upwards The next equation $5 x_{2}+6(2)=17$ gives $x_{2}=1$


## Solving Linear Equations

$$
\mathbf{A} \mathbf{x}=\mathbf{b}: \mathbf{A} \text { is } n \mathbf{b y} n
$$

- For $\mathbf{A x}=\mathbf{b}$ add extra column $\mathbf{b}$, Elimination and back substitution

$$
\left[\begin{array}{ll}
\mathbf{A} & \mathbf{b}
\end{array}\right]=\left[\begin{array}{cccc}
2 & 3 & 4 & 19 \\
4 & 11 & 14 & 55 \\
2 & 8 & 17 & 50
\end{array}\right] \rightarrow\left[\begin{array}{ll}
\mathbf{U} & \mathbf{c}
\end{array}\right]=\left[\begin{array}{cccc}
2 & 3 & 4 & 19 \\
0 & 5 & 6 & 17 \\
0 & 0 & 7 & 14
\end{array}\right]
$$

- Back substitution: The last equation $7 x_{3}=14$ gives $x_{3}=2$
- Work upwards The next equation $5 x_{2}+6(2)=17$ gives $x_{2}=1$
- Upwards again The first equation $2 x_{1}+3(1)+4(2)=19$ gives $x_{1}=4$


## Solving Linear Equations

$$
\mathbf{A} \mathbf{x}=\mathbf{b}: \mathbf{A} \text { is } n \mathbf{b y} n
$$

- For $\mathbf{A x}=\mathbf{b}$ add extra column $\mathbf{b}$, Elimination and back substitution

$$
\left[\begin{array}{ll}
\mathbf{A} & \mathbf{b}
\end{array}\right]=\left[\begin{array}{cccc}
2 & 3 & 4 & 19 \\
4 & 11 & 14 & 55 \\
2 & 8 & 17 & 50
\end{array}\right] \rightarrow\left[\begin{array}{ll}
\mathbf{U} & \mathbf{c}
\end{array}\right]=\left[\begin{array}{cccc}
2 & 3 & 4 & 19 \\
0 & 5 & 6 & 17 \\
0 & 0 & 7 & 14
\end{array}\right]
$$

- Back substitution: The last equation $7 x_{3}=14$ gives $x_{3}=2$
- Work upwards The next equation $5 x_{2}+6(2)=17$ gives $x_{2}=1$
- Upwards again The first equation $2 x_{1}+3(1)+4(2)=19$ gives $x_{1}=4$
- Conclusion The only solution to this example is $\mathbf{x}^{\top}=(4,1,2)$


## Cholesky decomposition

- Matrix decompositions: Describing a matrix by means of a different representation using factors of interpretable matrices.


## Cholesky decomposition

- Matrix decompositions: Describing a matrix by means of a different representation using factors of interpretable matrices.
- An analogy for matrix decomposition is the factoring of numbers, such as the factoring of 21 into prime numbers $7 \times 3$.


## Cholesky decomposition

- Matrix decompositions: Describing a matrix by means of a different representation using factors of interpretable matrices.
- An analogy for matrix decomposition is the factoring of numbers, such as the factoring of 21 into prime numbers $7 \times 3$.
- Cholesky decomposition: A square-root-like operation for symmetric, positive definite matrices $\mathbf{A}$.


## Cholesky decomposition

- Matrix decompositions: Describing a matrix by means of a different representation using factors of interpretable matrices.
- An analogy for matrix decomposition is the factoring of numbers, such as the factoring of 21 into prime numbers $7 \times 3$.
- Cholesky decomposition: A square-root-like operation for symmetric, positive definite matrices $\mathbf{A}$.
- Matrix $\mathbf{A}$ can be factorized into a product $\mathbf{A}=\mathbf{L L}^{\top}$, where $\mathbf{L}$ is a lower-triangular matrix with positive diagonal elements:

$$
\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right]=\left[\begin{array}{ccc}
l_{11} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
l_{n 1} & \cdots & l_{n n}
\end{array}\right]\left[\begin{array}{ccc}
l_{11} & \cdots & l_{n 1} \\
\vdots & \ddots & \vdots \\
0 & \cdots & l_{n n}
\end{array}\right]
$$

## Cholesky decomposition

- Cholsky factorization of $\mathbf{A} \in \mathbb{R}^{3 \times 3}$

$$
\left[\begin{array}{lll}
a_{11} & a_{21} & a_{31} \\
a_{21} & a_{22} & a_{32} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\mathbf{L} \mathbf{L}^{\top}=\left[\begin{array}{ccc}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{31} & l_{33}
\end{array}\right]\left[\begin{array}{ccc}
l_{11} & l_{21} & l_{31} \\
0 & l_{22} & l_{32} \\
0 & 0 & l_{33}
\end{array}\right]
$$

Multiplying out the right-hand side yields:

$$
\mathbf{A}=\left[\begin{array}{ccc}
l_{11}^{2} & l_{21} l_{11} & l_{31} l_{11} \\
l_{21} l_{11} & l_{21}^{2}+l_{22}^{2} & l_{31} l_{21}+l_{32} l_{22} \\
l_{31} l_{11} & l_{31} l_{21}+l_{32} l_{22} & l_{31}^{2}+l_{32}^{2}+l_{33}^{2}
\end{array}\right]
$$

## Cholesky decomposition

- Cholsky factorization of $\mathbf{A} \in \mathbb{R}^{3 \times 3}$

$$
\left[\begin{array}{lll}
a_{11} & a_{21} & a_{31} \\
a_{21} & a_{22} & a_{32} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\mathbf{L} \mathbf{L}^{\top}=\left[\begin{array}{ccc}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{31} & l_{33}
\end{array}\right]\left[\begin{array}{ccc}
l_{11} & l_{21} & l_{31} \\
0 & l_{22} & l_{32} \\
0 & 0 & l_{33}
\end{array}\right]
$$

Multiplying out the right-hand side yields:

$$
\mathbf{A}=\left[\begin{array}{ccc}
l_{11}^{2} & l_{21} l_{11} & l_{31} l_{11} \\
l_{21} l_{11} & l_{21}^{2}+l_{22}^{2} & l_{31} l_{21}+l_{32} l_{22} \\
l_{31} l_{11} & l_{31} l_{21}+l_{32} l_{22} & l_{31}^{2}+l_{32}^{2}+l_{33}^{2}
\end{array}\right]
$$

- There is a simple pattern

$$
\begin{aligned}
& l_{11}=\sqrt{a_{11}}, l_{22}=\sqrt{a_{22}-l_{21}^{2}}, l_{33}=\sqrt{a_{33}-\left(l_{31}^{2}+l_{32}^{2}\right)} \\
& l_{21}=\frac{1}{l_{11}} a_{21}, l_{31}=\frac{1}{l_{11}} a_{31}, l_{32}=\frac{1}{l_{22}}\left(a_{32}-l_{31} l_{21}\right)
\end{aligned}
$$

## Cholesky decomposition

- What is the benefit of using matrix decomposition? The computations can be performed efficiently

Example: Computing the determinant of a matrix

## Matrix Calculus

- Differentiation of Univariate Functions
$y=f(x), x, y \in \mathbb{R}$
Function $f$ of a scalar variable $x$
Definition : Difference Quotient

$$
\frac{\delta y}{\delta x}:=\frac{f(x+\delta x)-f(x)}{\delta x}
$$



Figure: The average incline of a function $f$ between $x_{0}$ and $x_{0}+\delta x$

## Matrix Calculus

## - Derivative

For $h>0$ the derivative of $f$ at $x$ is defined as the limit

$$
\frac{\mathrm{d} f}{\mathrm{~d} x}:=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

## Matrix Calculus

- Derivative

For $h>0$ the derivative of $f$ at $x$ is defined as the limit

$$
\frac{\mathrm{d} f}{\mathrm{~d} x}:=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- Partial Differentiation and Gradients
$y=f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{d_{n}}$ of $d_{n} n$ variables $x_{1}, x_{2}, \ldots x_{d_{n}}$
Function $f$ depends on one or more variables $\mathbf{x}$


## Gradient:

$$
\nabla_{\mathbf{x}} f=\frac{\partial f}{\partial \mathbf{x}}=\left[\begin{array}{c}
\frac{\partial f(\mathbf{x})}{\partial x_{1}} \\
\vdots \\
\frac{\partial f(\mathbf{x})}{\partial x_{d_{n}}}
\end{array}\right] \in \mathbb{R}^{n}
$$

where e.g., $\frac{\partial f}{\partial x_{1}}=\lim _{h \rightarrow 0} \frac{f\left(x_{1}+h, x_{2}, \ldots, x_{d_{n}}\right)-f(x)}{h}$.

## Matrix Calculus

- Gradients of Vector-Valued Functions: For a function $\mathbf{f}: \mathbb{R}^{d_{n}} \rightarrow \mathbb{R}^{d_{m}}$ and a vector $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{d_{n}}\end{array}\right]^{\top}$, the vector of value function is:

$$
\mathbf{f}(\mathbf{x})=\left[\begin{array}{c}
f_{1}(\mathbf{x}) \\
\vdots \\
f_{d_{m}}(\mathbf{x})
\end{array}\right] \in \mathbb{R}^{d_{m}}
$$

Jacobian: The matrix of all first-order partial derivatives of function $\mathbf{f}: \mathbb{R}^{d_{n}} \rightarrow \mathbb{R}^{d_{m}}$ is called Jacobian:

$$
\begin{aligned}
\mathbf{F}_{\mathbf{x}}(\mathbf{x}) & =\left[\begin{array}{lll}
\frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_{1}} & \ldots & \frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_{d_{n}}}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{\partial f_{1}(\mathbf{x})}{\partial x_{1}} & \ldots & \frac{\partial f_{1}(\mathbf{x})}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial f_{d_{m}}(\mathbf{x})}{\partial x_{1}} & \cdots & \frac{\partial f_{m}(\mathbf{x})}{\partial x_{d_{n}}}
\end{array}\right] \in \mathbb{R}^{d_{m} \times d_{n}} .
\end{aligned}
$$

## Linear and affine functions

$-f: \mathbb{R}^{d_{n}} \rightarrow \mathbb{R}$ means $f$ is a function mapping $d_{n}$-dimensional vectors to numbers

## Linear and affine functions

$-f: \mathbb{R}^{d_{n}} \rightarrow \mathbb{R}$ means $f$ is a function mapping $d_{n}$-dimensional vectors to numbers

- $f$ is linear if $f(\alpha \mathbf{x}+\beta \mathbf{y})=\alpha f(\mathbf{x})+\beta f(\mathbf{y})$


## Linear and affine functions

$-f: \mathbb{R}^{d_{n}} \rightarrow \mathbb{R}$ means $f$ is a function mapping $d_{n}$-dimensional vectors to numbers

- $f$ is linear if $f(\alpha \mathbf{x}+\beta \mathbf{y})=\alpha f(\mathbf{x})+\beta f(\mathbf{y})$
- when $\mathbf{a}$ is an $d_{n}$-dimensional vector, the function $f(\mathbf{x})=\mathbf{a}^{\top} \mathbf{x}=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{d_{n}} x_{d_{n}}$ is the inner product function


## Linear and affine functions

$-f: \mathbb{R}^{d_{n}} \rightarrow \mathbb{R}$ means $f$ is a function mapping $d_{n}$-dimensional vectors to numbers

- $f$ is linear if $f(\alpha \mathbf{x}+\beta \mathbf{y})=\alpha f(\mathbf{x})+\beta f(\mathbf{y})$
- when $\mathbf{a}$ is an $d_{n}$-dimensional vector, the function $f(\mathbf{x})=\mathbf{a}^{\top} \mathbf{x}=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{d_{n}} x_{d_{n}}$ is the inner product function
- a function that is linear plus a constant is called affine


## Linear and affine functions

$-f: \mathbb{R}^{d_{n}} \rightarrow \mathbb{R}$ means $f$ is a function mapping $d_{n}$-dimensional vectors to numbers

- $f$ is linear if $f(\alpha \mathbf{x}+\beta \mathbf{y})=\alpha f(\mathbf{x})+\beta f(\mathbf{y})$
- when $\mathbf{a}$ is an $d_{n}$-dimensional vector, the function $f(\mathbf{x})=\mathbf{a}^{\top} \mathbf{x}=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{d_{n}} x_{d_{n}}$ is the inner product function
- a function that is linear plus a constant is called affine
- general form is $f(\mathbf{x})=\mathbf{a}^{\top} \mathbf{x}+b$, with a an $d_{n}$-vector and $b$ a scalar


## Linear and affine functions

$-f: \mathbb{R}^{d_{n}} \rightarrow \mathbb{R}$ means $f$ is a function mapping $d_{n}$-dimensional vectors to numbers

- $f$ is linear if $f(\alpha \mathbf{x}+\beta \mathbf{y})=\alpha f(\mathbf{x})+\beta f(\mathbf{y})$
- when $\mathbf{a}$ is an $d_{n}$-dimensional vector, the function $f(\mathbf{x})=\mathbf{a}^{\top} \mathbf{x}=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{d_{n}} x_{d_{n}}$ is the inner product function
- a function that is linear plus a constant is called affine
- general form is $f(\mathbf{x})=\mathbf{a}^{\top} \mathbf{x}+b$, with a an $d_{n}$-vector and $b$ a scalar
- suppose $g: \mathbb{R}^{d_{n}} \rightarrow \mathbb{R}$ is a nonlinear function


## Linear and affine functions

- $f: \mathbb{R}^{d_{n}} \rightarrow \mathbb{R}$ means $f$ is a function mapping $d_{n}$-dimensional vectors to numbers
- $f$ is linear if $f(\alpha \mathbf{x}+\beta \mathbf{y})=\alpha f(\mathbf{x})+\beta f(\mathbf{y})$
- when $\mathbf{a}$ is an $d_{n}$-dimensional vector, the function $f(\mathbf{x})=\mathbf{a}^{\top} \mathbf{x}=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{d_{n}} x_{d_{n}}$ is the inner product function
- a function that is linear plus a constant is called affine
- general form is $f(\mathbf{x})=\mathbf{a}^{\top} \mathbf{x}+b$, with a an $d_{n}$-vector and $b$ a scalar
- suppose $g: \mathbb{R}^{d_{n}} \rightarrow \mathbb{R}$ is a nonlinear function
- First-order Taylor approximation of $g$, near point $\hat{\mathbf{x}}$ :
$g(\mathbf{x}) \approx g(\hat{\mathbf{x}})+\frac{\partial g(\hat{\mathbf{x}})}{\partial x_{1}}\left(x_{1}-\hat{x}_{1}\right)+\ldots+\frac{\partial g(\hat{\mathbf{x}})}{\partial x_{d_{n}}}\left(x_{d_{n}}-\hat{x}_{d_{n}}\right) \quad$ affine


## Linear and affine functions

- $f: \mathbb{R}^{d_{n}} \rightarrow \mathbb{R}$ means $f$ is a function mapping $d_{n}$-dimensional vectors to numbers
- $f$ is linear if $f(\alpha \mathbf{x}+\beta \mathbf{y})=\alpha f(\mathbf{x})+\beta f(\mathbf{y})$
- when $\mathbf{a}$ is an $d_{n}$-dimensional vector, the function $f(\mathbf{x})=\mathbf{a}^{\top} \mathbf{x}=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{d_{n}} x_{d_{n}}$ is the inner product function
- a function that is linear plus a constant is called affine
- general form is $f(\mathbf{x})=\mathbf{a}^{\top} \mathbf{x}+b$, with a an $d_{n}$-vector and $b$ a scalar
- suppose $g: \mathbb{R}^{d_{n}} \rightarrow \mathbb{R}$ is a nonlinear function
- First-order Taylor approximation of $g$, near point $\hat{\mathbf{x}}$ : $g(\mathbf{x}) \approx g(\hat{\mathbf{x}})+\frac{\partial g(\hat{\mathbf{x}})}{\partial x_{1}}\left(x_{1}-\hat{x}_{1}\right)+\ldots+\frac{\partial g(\hat{\mathbf{x}})}{\partial x_{d_{n}}}\left(x_{d_{n}}-\hat{x}_{d_{n}}\right) \quad$ affine
- We can write using inner product as $g \approx g(\hat{\mathbf{x}})+\nabla g(\hat{\mathbf{x}})^{\top}(\mathbf{x}-\hat{\mathbf{x}})$ where $\nabla g(\hat{\mathbf{x}})=\left[\begin{array}{lll}\frac{\partial g(\hat{\mathbf{x}})}{\partial x_{1}} & \ldots & \frac{\partial g(\hat{\mathbf{x}})}{\partial x_{d_{n}}}\end{array}\right]$


## References

[1] G. Strang, "Related resources," MIT OpenCourseWare. [Online]. Available: https : //ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/pages/related-resources/. [Accessed: 23-Aug-2022]
[2] S. Boy, and L. Vandenberghe, 2018. Introduction to applied linear algebra: vectors, matrices, and least squares. Cambridge university press.
[3] S. Boy, and L. Vandenberghe, Lecture slides for Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares.
[4] M.P. Deisenroth, A.A. Faisal, and C.S. Ong, 2020. Mathematics for machine learning. Cambridge University Press.

