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Basic Concepts and Notation

Linear algebra provides a way of compactly representing and
operating on sets of linear equations.
▶ For example, consider the following system of equations:

4x1 − 5x2 = −13

−2x1 + 3x2 = 9

▶ Solving the system of 2 equations and 2 variables.
▶ Compact form: Ax = b

A =

[
4 −5
−2 3

]
b =

[
−13
9

]
▶ What are the advantages of analyzing linear equations in this

form?
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Basic Notation

▶ Scalars: Quantities that are fully described by a magnitude (or
numerical value) alone. Scalars are italic (a, b, . . .)

▶ A ∈ Rdm×dn : a matrix with dm rows and dn columns, where the
entries of A are real numbers. (Matrices are bold uppercase).

▶ x ∈ Rdn : a vector with dn entries. (Vectors are bold lowercase).

▶ Column vector: an dn-dimensional vector is often thought of as
a matrix with dn rows and 1 column.

▶ Row vector: a matrix with 1 row and dn columns — we typically
write xT (here xT denotes the transpose of x, which we will
define shortly).
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Vectors

▶ A 3-dimensional vector v =

v1v2
v3

 has 3 elements v1, v2, v3 as in

v =

24
1



▶ Number of elements is the dimension of the vector
▶ We use bold symbols to denote vectors, e.g., v,x, . . .
▶ We add vectors v +w. We multiply them by numbers (scalars)

like c = 4 and d = 034
5

+

 2
0
−2

 =

54
3

, 4

34
5

 =

1216
20

, 0

 2
0
−2

 =

00
0


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Vectors

▶ Ones vector: dn-dimensional vector with all entries 1

▶ Unit vector: a unit vector has one entry 1 and all others 0
denoted ei where i is entry that is 1

▶ Linear combinations:
for dn-dimensional vectors v1, . . . ,vm and scalars β1, . . . , βm,

β1v1 + . . .+ βmvm

is a linear combination of the vectors

1

12
3

+ 2

34
5

+ 4

10
0

 =

1110
13


▶ Sometimes a combination gives the zero vector. Then the

vectors are linearly dependent

−1

12
3

+ 2

45
6

− 1

78
9


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Vectors

▶ Dot Products v ·w or v⊤w34
5

 ·

20
1

 = 3× 2 + 4× 0 + 5× 1 = 11 v ·w = w · v

▶ ei
⊤v = vi (picks out the ith entry)

▶ 1⊤v = v1 + . . .+ vn

▶ Length squared of v =

[
3
4

]
is v · v = v⊤v = 32 + 42 = 9 + 16

▶ The dot product v ·w reveals the angle θ between v and w:
v ·w = ∥v∥∥w∥ cos θ,

▶ The angle between v =

 2
2
−1

 and w =

−1
2
2

 is θ = 90◦

because v ·w = 0
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Vectors

▶ Norm: norm of a vector ∥x∥ is a measure of the “length” of the
vector.
For example, Euclidean or l2 norm: ∥x∥2 =

√∑n
i=1 x

2
i

The l1 norm: ∥x∥1 =
∑n

i=1 |xi|
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Matrices

▶ Matrices Multiplying Vectors:
There is a row way to multiply Ax and also a column way to
compute the vector Ax

▶ Row way = Dot product of vector x with each row of A

Ax =

[
2 5
3 7

] [
v1
v2

]
=

[
2v1 + 5v2
3v1 + 7v2

] [
2 5
3 7

] [
1
1

]
=

[
7
10

]
▶ Column way = Ax is a combination of the columns of A

Ax =

[
2 5
3 7

] [
v1
v2

]
= v1

[
column

1

]
+ v2

[
column

2

]
[
2 5
3 7

] [
1
1

]
=

[
2
3

]
+

[
5
7

]
=

[
7
10

]
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Matrices

▶ The identity matrix has Ix = x for every x1 0 0
0 1 0
0 0 1

x1x2
x3

 =

x1x2
x3



▶ Dependent and Independent Columns
The columns of A are “dependent” if one column is a linear
combination of the other columns
Or Ax = 0 for some vector x (other than x = 0)

A1 =

1 2
2 4
1 2

 Reason: Column 2 of A1 = 2 (Column 1)

A2 =

1 4 0
2 5 0
3 6 0

 Reason: A2 times x =

00
1

 gives

00
0


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Matrices

▶ The columns of A are “independent” if no column is a linear
combination of the other columns
Another way to say it : Ax = 0 only when x = 0

A3 =

1 4
2 5
3 9

 and A4 = I
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Matrices: matrix-matrix multiplication AB

There are 4 ways to multiply matrices.
1. (Row i of A) · (Column j of B) produces one number:

row i, column j of AB[
1 2
3 4

] [
5 7
6 8

]
=

[
17 .
. .

]
because

[
1 2

] [5
6

]
= 17 Dot product

2. (Matrix A) (Column j of B) produces column j of AB :
Combine columns of A[
1 2
3 4

] [
5 7
6 8

]
=

[
17 .
39 .

]
because 5

[
1
3

]
+ 6

[
2
4

]
=

[
17
39

]
Linear combinations.
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Matrices: matrix-matrix Products AB

3. (Row i of A) (Matrix B) produces row i of AB : Combine rows
of B[
1 2
3 4

] [
5 7
6 8

]
=

[
17 23
. .

]
because 1

[
5 7

]
+ 2

[
6 8

]
=

[
17 23

]

4. (Column k of A) (Row k of B) produces a matrix : Add these
matrices![
1
3

] [
5 7

]
=

[
5 7
15 21

]
and

[
2
4

] [
6 8

]
=

[
12 16
24 32

]
Now add: AB =

[
17 23
39 53

]
Outer product
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Operations and Properties

▶ Transpose of A =

[
1 2 3
0 0 4

]
is A⊤ =

1 0
2 0
3 4


(A⊤)ij = Aji

▶ Rules for sum and product

Transpose of A+B is A⊤ +B⊤

Transpose of AB is B⊤A⊤

▶ A symmetric matrix has S⊤ = S means sij = sji
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Operations and Properties

▶ Determinant: The determinant of a square matrix A ∈ Rn×n , is
a function det : Rn×n → R, and is denoted as |A| or det A
The equations for determinants of matrices up to size 3× 3:
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Operations and Properties

▶ Positive definite: A symmetric matrix A is positive definite (PD)
if for all non-zero vectors x ∈ Rn , xTAx > 0. This is usually
denoted as A > 0.

▶ Positive semidefinite: A symmetric matrix A is positive
semidefinite (PSD) if for all vectors x ∈ Rn , xTAx ≥ 0. This is
usually denoted as A ≥ 0.

▶ Negative definite: A symmetric matrix A is negative definite
(ND) if for all non-zero vectors x ∈ Rn , xTAx < 0. This is
usually denoted as A < 0.

▶ Negative semidefinite: A symmetric matrix A is negative
semidefinite (NSD) if for all vectors x ∈ Rn , xTAx ≤ 0. This is
usually denoted as A ≤ 0.
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Solving Linear Equations
Ax = b: A is n by n

▶ Inverse Matrices A−1 and Solutions x = A−1b

The inverse of a square matrix A has A−1A = I and AA−1 = I[
a b
c d

]−1

= 1
ad−bc

[
d −b
−c a

]−1

A has no inverse if ad− bc = 0

▶ Invertible ⇔ Rows are independent ⇔ Columns are
independent.

▶ Invertible ⇔ The only solution to Ax = b is x = A−1b

▶ Computing A−1 is not efficient for Ax = b. Use: elimination.
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Solving Linear Equations
Ax = b: A is n by n

▶ Elimination : Square Matrix A to Triangular U

A =

2 3 4
4 11 14
2 8 17

 →

2 3 4
0 5 6
2 8 17

 →

2 3 4
0 5 6
0 5 13

 →2 3 4
0 5 6
0 0 7

 = U

▶ One elimination step subtracts lij times row j from row i (i > j)
▶ Each step produces a zero below the diagonal of

U : l21 = 2, l31 = l32 = 1

▶ Elimination produced no zeros on the diagonal and created 3
zeros in U.
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Solving Linear Equations
Ax = b: A is n by n

▶ For Ax = b add extra column b, Elimination and back
substitution

[
A b

]
=

2 3 4 19
4 11 14 55
2 8 17 50

 →
[
U c

]
=

2 3 4 19
0 5 6 17
0 0 7 14



▶ Back substitution: The last equation 7x3 = 14 gives x3 = 2

▶ Work upwards The next equation 5x2 + 6(2) = 17 gives x2 = 1

▶ Upwards again The first equation 2x1 + 3(1) + 4(2) = 19 gives
x1 = 4

▶ Conclusion The only solution to this example is x⊤ = (4, 1, 2)
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Cholesky decomposition

▶ Matrix decompositions: Describing a matrix by means of a
different representation using factors of interpretable matrices.

▶ An analogy for matrix decomposition is the factoring of numbers,
such as the factoring of 21 into prime numbers 7× 3.

▶ Cholesky decomposition: A square-root-like operation for
symmetric, positive definite matrices A.

▶ Matrix A can be factorized into a product A = LL⊤ , where L is
a lower-triangular matrix with positive diagonal elements:a11 · · · a1n

...
. . .

...
an1 · · · ann

 =

l11 · · · 0
...

. . .
...

ln1 · · · lnn


l11 · · · ln1

...
. . .

...
0 · · · lnn


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Cholesky decomposition

▶ Cholsky factorization of A ∈ R3×3a11 a21 a31
a21 a22 a32
a31 a32 a33

 = LL⊤ =

l11 0 0
l21 l22 0
l31 l31 l33

l11 l21 l31
0 l22 l32
0 0 l33


Multiplying out the right-hand side yields:

A =

 l211 l21l11 l31l11
l21l11 l221 + l222 l31l21 + l32l22
l31l11 l31l21 + l32l22 l231 + l232 + l233



▶ There is a simple pattern
l11 =

√
a11, l22 =

√
a22 − l221, l33 =

√
a33 − (l231 + l232)

l21 =
1
l11

a21, l31 =
1
l11

a31, l32 =
1
l22

(a32 − l31l21)
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Cholesky decomposition

▶ What is the benefit of using matrix decomposition? The
computations can be performed efficiently

Example: Computing the determinant of a matrix
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Matrix Calculus

▶ Differentiation of Univariate Functions
y = f(x), x, y ∈ R Function f of a scalar variable x
Definition : Difference Quotient

δy

δx
:=

f(x+ δx)− f(x)

δx

Figure: The average incline of a function f between x0 and x0 + δx

Recap of Matrix Computations 23/27
Fatemeh Yaghoobi



Matrix Calculus

▶ Derivative
For h > 0 the derivative of f at x is defined as the limit

df

dx
:= lim

h→0

f(x+ h)− f(x)

h

▶ Partial Differentiation and Gradients
y = f(x),x ∈ Rdn of dnn variables x1, x2, . . . xdn

Function f depends on one or more variables x

Gradient:

∇xf =
∂f

∂x
=


∂f(x)
∂x1
...

∂f(x)
∂xdn

 ∈ Rn

where e.g., ∂f
∂x1

= limh→0
f(x1+h,x2,...,xdn )−f(x)

h .
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Matrix Calculus

▶ Gradients of Vector-Valued Functions: For a function
f : Rdn → Rdm and a vector x =

[
x1 . . . xdn

]⊤, the vector of
value function is:

f(x) =

 f1(x)
...

fdm(x)

 ∈ Rdm

Jacobian: The matrix of all first-order partial derivatives of
function f : Rdn → Rdm is called Jacobian:

Fx(x) =
[
∂f(x)
∂x1

. . . ∂f(x)
∂xdn

]

=


∂f1(x)
∂x1

· · · ∂f1(x)
∂xn

...
...

∂fdm (x)
∂x1

· · · ∂fm(x)
∂xdn

 ∈ Rdm×dn .
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Linear and affine functions

▶ f : Rdn → R means f is a function mapping dn-dimensional
vectors to numbers

▶ f is linear if f(αx+ βy) = αf(x) + βf(y)
▶ when a is an dn-dimensional vector, the function

f(x) = a⊤x = a1x1 + a2x2 + . . .+ adnxdn is the inner product
function

▶ a function that is linear plus a constant is called affine
▶ general form is f(x) = a⊤x+ b, with a an dn-vector and b a

scalar
▶ suppose g : Rdn → R is a nonlinear function
▶ First-order Taylor approximation of g , near point x̂:

g(x) ≈ g(x̂) + ∂g(x̂)
∂x1

(x1 − x̂1) + . . .+ ∂g(x̂)
∂xdn

(xdn − x̂dn) affine

▶ We can write using inner product as g ≈ g(x̂) +∇g(x̂)⊤(x− x̂)

where ∇g(x̂) =
[
∂g(x̂)
∂x1

. . . ∂g(x̂)
∂xdn

]
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