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Basic Concepts and Notation

Linear algebra provides a way of compactly representing and
operating on sets of linear equations.

> For example, consider the following system of equations:

41’1 — 51’2 =-13
—2x1 +3x2 =9
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Basic Concepts and Notation

Linear algebra provides a way of compactly representing and
operating on sets of linear equations.

> For example, consider the following system of equations:

41’1 — 51’2 =-13
—2x1 +3x2 =9

> Solving the system of 2 equations and 2 variables.
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Basic Concepts and Notation

Linear algebra provides a way of compactly representing and
operating on sets of linear equations.

> For example, consider the following system of equations:

41’1 — 51’2 =-13
—2x1 +3x2 =9

> Solving the system of 2 equations and 2 variables.
> Compact form: Ax =b

SRR
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Basic Concepts and Notation

Linear algebra provides a way of compactly representing and
operating on sets of linear equations.

> For example, consider the following system of equations:

41’1 — 51’2 =-13
—2r14+3r2=9

> Solving the system of 2 equations and 2 variables.
> Compact form: Ax =b

S ERIR R

> What are the advantages of analyzing linear equations in this
form?
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Basic Notation

> Scalars: Quantities that are fully described by a magnitude (or
numerical value) alone. Scalars are italic (a, b, . . .)
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Basic Notation

> Scalars: Quantities that are fully described by a magnitude (or
numerical value) alone. Scalars are italic (a, b, . . .)

> A € R¥mXdn: g matrix with d,,, rows and d,, columns, where the
entries of A are real numbers. (Matrices are bold uppercase).
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Basic Notation

> Scalars: Quantities that are fully described by a magnitude (or
numerical value) alone. Scalars are italic (a, b, . . .)

> A € R¥mXdn: g matrix with d,,, rows and d,, columns, where the
entries of A are real numbers. (Matrices are bold uppercase).

» x € R%: avector with d,, entries. (Vectors are bold lowercase).
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Basic Notation

> Scalars: Quantities that are fully described by a magnitude (or
numerical value) alone. Scalars are italic (a, b, . . .)

> A € R¥mXdn: g matrix with d,,, rows and d,, columns, where the
entries of A are real numbers. (Matrices are bold uppercase).

» x € R%: avector with d,, entries. (Vectors are bold lowercase).

» Column vector: an d,,-dimensional vector is often thought of as
a matrix with d,, rows and 1 column.
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Basic Notation

> Scalars: Quantities that are fully described by a magnitude (or
numerical value) alone. Scalars are italic (a, b, . . .)

> A € R¥mXdn: g matrix with d,,, rows and d,, columns, where the
entries of A are real numbers. (Matrices are bold uppercase).

» x € R%: avector with d,, entries. (Vectors are bold lowercase).

» Column vector: an d,,-dimensional vector is often thought of as
a matrix with d,, rows and 1 column.

> Row vector: a matrix with 1 row and d,, columns — we typically
write x” (here x! denotes the transpose of x, which we will
define shortly).
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Vectors

U1
> A 3-dimensional vector v = |v9 | has 3 elements v1, vs, v3 asin

U3
2
v= |4
1
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Vectors

U1
> A 3-dimensional vector v = |v9 | has 3 elements v1, vs, v3 asin
U3
2
v= |4
1

» Number of elements is the dimension of the vector
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Vectors

U1
> A 3-dimensional vector v = |v9 | has 3 elements v1, vs, v3 asin
U3
2
v= |4
1

» Number of elements is the dimension of the vector
> We use bold symbols to denote vectors, e.g., v, x, ...
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v

Vectors

U1
A 3-dimensional vector v = [wvy| has 3 elements vy, v2, v3 @s in
U3
2
v= |4
1
Number of elements is the dimension of the vector

We use bold symbols to denote vectors, e.g., v, x, . ..

We add vectors v + w. We multiply them by numbers (scalars)
likec=4andd =0

3 2 5 3 12 2 0
41+ |0 | = 14|, 44| =|16(, 0] 0 | = |0
5) -2 3 ) 20 -2 0
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Vectors

» Ones vector: d,-dimensional vector with all entries 1
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Vectors

» Ones vector: d,-dimensional vector with all entries 1
> Unit vector: a unit vector has one entry 1 and all others 0
denoted e; where i is entry that is 1
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Vectors

» Ones vector: d,-dimensional vector with all entries 1
> Unit vector: a unit vector has one entry 1 and all others 0
denoted e; where i is entry that is 1
> Linear combinations:
for d,-dimensional vectors v, ..., v,, and scalars 31, ..., Gm,
B1vi+ ...+ BmVm
is a linear combination of the vectors

1 3 1 11
112 +2|4| +4 |0 = |10
3 5 0 13
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Vectors

» Ones vector: d,-dimensional vector with all entries 1
> Unit vector: a unit vector has one entry 1 and all others 0

denoted e; where i is entry that is 1

> Linear combinations:

for d,-dimensional vectors v, ..., v,, and scalars 31, ..., Gm,

Blvl +...+ Bmvm
is a linear combination of the vectors

1 3 1 11
112 +2|4| +4 |0 = |10
3 5 0 13

> Sometimes a combination gives the zero vector. Then the

vectors are linearly dependent

1 4 7
—1{2|+2|5] —1]8
3 6 9
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Vectors

» Dot Products v-worv'w
3 2

4l |0l =3x244x0+5x1=11[v-w=w-V|

) 1
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Vectors

» Dot Products v-worv'w

3 2

4l |0l =3x244x0+5x1=11[v-w=w-V|
) 1

T

> e;' v = v; (picks out the ith entry)
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Vectors

» Dot Products v-worv'w

3 2
4l |0l =3x244x0+5x1=11[v-w=w-V|
) 1

> e; v = v; (picks out the ith entry)
> 1Tv:v1+...—|—vn
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Vectors

» Dot Products v-worv'w
3 2

4l |0l =3x244x0+5x1=11[v-w=w-V|

5 1
> e; v = v; (picks out the ith entry)
> 1Tv:v1+...+vn

» Length squared of v = ﬂ isv-v=viv=32442=9+16

4
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Vectors

» Dot Products v-worv'w
3 2

4l |0l =3x244x0+5x1=11[v-w=w-V|

5 1
> e; v = v; (picks out the ith entry)
> 1Tv:v1+...+vn

» Length squared of v = ﬂ isv-v=viv=32442=9+16

4

» The dot product v - w reveals the angle 6 between v and w:
v w = ||v]|[[w] cos®,
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Vectors

» Dot Products v-worv'w

3 2

4] |0] =3x244%x045x1=1I[V-W=w V]
5 1

> e; v = v; (picks out the ith entry)

> 1Tv:v1+...—|—vn

» Length squared of v = ﬂ isv-v=viv=32442=9+16

4
» The dot product v - w reveals the angle 6 between v and w:
v-w = ||v||||w]| cosb,
2 -1
> The angle betweenv = | 2 | andw = | 2 | isf = 90°
-1 2
because v-w =10
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Vectors

» Norm: norm of a vector ||x|| is a measure of the “length” of the
vector.
For example, Euclidean or I norm: ||x||, = /> i @7
The I; norm: ||x||; = >0 |z
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Matrices

> Matrices Multiplying Vectors:
There is a row way to multiply Ax and also a column way to
compute the vector Ax
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Matrices

> Matrices Multiplying Vectors:
There is a row way to multiply Ax and also a column way to
compute the vector Ax

> ’ Row way = Dot product of vector x with each row of A \

e[ AR -Ezd -
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Matrices

> Matrices Multiplying Vectors:
There is a row way to multiply Ax and also a column way to
compute the vector Ax

> ’Rowway:Dot product of vector x with each row ofA\
AX_25111_22)1—|—5212 2 5|1 |7
37 V2 o 3v1 + Tvg 3 71 (1] |10
> ’ Column way = Ax is a combination of the columns of A ‘
|2 5| [v1| _  |column column
w3 o] = [ 5
2 5| |1 2 5 7
s 0B
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Matrices

> The identity matrix has Ix = x for every x

1 00 I I
01 0 ol = X2
0 01 I3 I3
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Matrices

> The identity matrix has Ix = x for every x

1 00 I I
01 0 ol = X2
0 0 1 I3 I3

> Dependent and Independent Columns
The columns of A are “dependent” if one column is a linear
combination of the other columns
Or Ax = 0 for some vector x (other than x = 0)

1 2
A, = |2 4] Reason: Column 2 of A; =2 (Column 1)
1 2
[1 4 0 0 0
Ao =12 5 0] Reason: Astimesx = |0 gives |0
3 6 0 1 0
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Matrices

> The columns of A are “independent” if no column is a linear
combination of the other columns
Another way to say it : Ax =0 only whenx =0

1 4
A3: 2 5 andA4:I
39
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Matrices: matrix-matrix multiplication AB

There are 4 ways to multiply matrices.

1. (Row ¢ of A) - (Column 5 of B) produces one number:
row ¢, column j of AB

b Al =17

because [1 2] [5

6} =17 Dot product
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Matrices: matrix-matrix multiplication AB

There are 4 ways to multiply matrices.

1. (Row ¢ of A) - (Column j of B) produces one number:
row ¢, column j of AB

1215 71 _ 17 .
3 4|16 8 |. .
because [1 2] [2} =17 Dot product

2. (Matrix A) (Column 5 of B) produces column j of AB :
Combine columns of A

2306 =l |

1
because 5 [3] +6 [ 4

] = [?1);] Linear combinations.
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Matrices: matrix-matrix Products AB

3. (Row ¢ of A) (Matrix B) produces row ¢ of AB : Combine rows
of B

B

because 1[5 7] +2[6 8] =[17 23]
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Matrices: matrix-matrix Products AB

3. (Row ¢ of A) (Matrix B) produces row ¢ of AB : Combine rows
of B

AR g
because 1[5 7] +2[6 8] =[17 23]

4. (Column k of A) (Row k of B) produces a matrix : Add these
matrices!

HI R AT HICEE o]
17 23

Now add: AB = [39 53

] Outer product
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Operations and Properties

1 0
12 3. .+
> Transpose of A = 00 4 isA'=12 0
3 4
T —
(A )ij = Aji
A? BT



Operations and Properties

1 2 3 Lo
» Transpose of A = isAT =12 0
0 0 4
3 4
(AT)ij = Aji
» Rules for sum and product
Transpose of A + Bis AT + BT
Transpose of ABisBTAT
A IS\a::olfnifvgsiterr , Recap of Matrix Computations 14/27
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Operations and Properties

1 2 3

> =
Transpose of A [0 0 4

]isAT:

(A7) = Ay

» Rules for sum and product
Transpose of A + Bis AT + BT

Transpose of ABisBTAT

> A symmetric matrix has S’ = S means s;; = s;;
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Operations and Properties

» Determinant: The determinant of a square matrix A € R"*" | is

a function det : R™*" — R, and is denoted as |A| or det A
The equations for determinants of matrices up to size 3 x 3:

g
a
a3

|

11
121
12
2y

b3y

|[ff-11|| = a1

a1z
22
3
oy

(t33

|
|

11102 — @1202]

(1109033 + diadagtiy) + G130 d32
—a11Ga303y — dizderdyy — (130a203)

A?

Aalto University

School of Electrical

Engineering
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Operations and Properties

> Positive definite: A symmetric matrix A is positive definite (PD)
if for all non-zero vectors x € R" , x Ax > 0. This is usually
denoted as A > 0.
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Operations and Properties

> Positive definite: A symmetric matrix A is positive definite (PD)
if for all non-zero vectors x € R" , x Ax > 0. This is usually
denoted as A > 0.

> Positive semidefinite: A symmetric matrix A is positive
semidefinite (PSD) if for all vectors x € R" , xT Ax > 0. This is
usually denoted as A > 0.
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Operations and Properties

> Positive definite: A symmetric matrix A is positive definite (PD)
if for all non-zero vectors x € R" , x Ax > 0. This is usually
denoted as A > 0.

> Positive semidefinite: A symmetric matrix A is positive
semidefinite (PSD) if for all vectors x € R" , xT Ax > 0. This is
usually denoted as A > 0.

> Negative definite: A symmetric matrix A is negative definite
(ND) if for all non-zero vectors x € R" , x/ Ax < 0. This is
usually denoted as A < 0.
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Operations and Properties

> Positive definite: A symmetric matrix A is positive definite (PD)
if for all non-zero vectors x € R" , x Ax > 0. This is usually
denoted as A > 0.

> Positive semidefinite: A symmetric matrix A is positive
semidefinite (PSD) if for all vectors x € R" , xT Ax > 0. This is
usually denoted as A > 0.

> Negative definite: A symmetric matrix A is negative definite
(ND) if for all non-zero vectors x € R" , x/ Ax < 0. This is
usually denoted as A < 0.

> Negative semidefinite: A symmetric matrix A is negative
semidefinite (NSD) if for all vectors x € R , x! Ax < 0. This is
usually denoted as A < 0.
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Solving Linear Equations
Ax=Db: Aisnbyn

» Inverse Matrices A ! and Solutions x = A~ 'b

The inverse of a square matrix A has A™'A =Tand AA~! =1

a b7, [d b
c d T ad=bc | _. g

A has no inverse if ad — bc = 0
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Solving Linear Equations
Ax=Db: Aisnbyn

» Inverse Matrices A ! and Solutions x = A~ 'b

The inverse of a square matrix A has A™'A =Tand AA~! =1

a b7, [d b
c d T ad=bc | _. g

A has no inverse if ad — bc = 0

> Invertible < Rows are independent < Columns are
independent.
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Solving Linear Equations
Ax=Db: Aisnbyn

» Inverse Matrices A ! and Solutions x = A~ 'b

The inverse of a square matrix A has A™'A =Tand AA~! =1

a b7, [d b
c d T ad=bc | _. g

A has no inverse if ad — bc = 0

> Invertible < Rows are independent < Columns are
independent.

» Invertible < The only solutionto Ax =bisx = A~'b
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Solving Linear Equations
Ax=Db: Aisnbyn

» Inverse Matrices A ! and Solutions x = A~ 'b

The inverse of a square matrix A has A™'A =Tand AA~! =1

a b7, [d b
c d T ad=bc | _. g

A has no inverse if ad — bc = 0

> Invertible < Rows are independent < Columns are
independent.

» Invertible < The only solutionto Ax =bisx = A~'b
» Computing A~! is not efficient for Ax = b. Use: elimination.
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Solving Linear Equations
Ax=b: Aisnbyn

> Elimination : Square Matrix A to Triangular U

2 3 4 2 3 4 2 3 4
A=14 11 14| - |0 5 6| = |0 5 6| —

2 8 17 2 8 17 0 5 13

2 3 4

0 5 6|=U

0 0 7



Solving Linear Equations
Ax=Db: Aisnbyn

> Elimination : Square Matrix A to Triangular U

2 3 4 2 3 4 2 3 4
A=1|4 11 14| -0 5 6| —=1[0 5 6| —

2 8 17 2 8 17 0 5 13

2 3 4

0 5 6|=U

00 7

» One elimination step subtracts [;; times row j from row 7 (i > j)
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Solving Linear Equations
Ax=Db: Aisnbyn

> Elimination : Square Matrix A to Triangular U

2 3 4 2 3 4 2 3 4
A=1|4 11 14| -0 5 6| —=1[0 5 6| —

2 8 17 2 8 17 0 5 13

2 3 4

0 5 6|=U

00 7

» One elimination step subtracts [;; times row j from row 7 (i > j)

» Each step produces a zero below the diagonal of
U:ly =213 =132=1
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Solving Linear Equations
Ax=Db: Aisnbyn

> Elimination : Square Matrix A to Triangular U

2 3 4 2 3 4 2 3 4
A=1|4 11 14| -0 5 6| —=1[0 5 6| —

2 8 17 2 8 17 0 5 13

2 3 4

0 5 6[{=U

00 7

» One elimination step subtracts [;; times row j from row 7 (i > j)
» Each step produces a zero below the diagonal of
U:lQl :27l31 :l32 — 1

» Elimination produced no zeros on the diagonal and created 3
zeros in U.
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Solving Linear Equations
Ax=b: Aisnbyn

> For Ax = b add extra column b, Elimination and back

substitution
2 3 4 19 2 3 4 19
[A b]=1]4 11 14 55| - [U ¢|/=1|0 5 6 17
2 8 17 a0 00 7 14
A IS\a::olfnifvgsiterr , Recap of Matrix Computations 19/27
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Solving Linear Equations
Ax=Db: Aisnbyn

> For Ax = b add extra column b, Elimination and back
substitution

2 3 4 19 2 3 419
[A b]=1]4 11 14 55| - [U ¢|/=1|0 5 6 17
2 8 17 50 007 14

> Back substitution: The last equation 7x3 = 14 gives z3 = 2
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Solving Linear Equations
Ax=Db: Aisnbyn

> For Ax = b add extra column b, Elimination and back
substitution

2 3 4 19 2 3 419
[A b]=1]4 11 14 55| - [U ¢|/=1|0 5 6 17
2 8 17 50 007 14

> Back substitution: The last equation 7x3 = 14 gives z3 = 2
» Work upwards The next equation 5z + 6(2) = 17 gives z3 = 1

A Aalto University Recap of Matrix Computations 19/27

School of Electrical Fatemeh Yaghoobi
B Engineering



Solving Linear Equations
Ax=Db: Aisnbyn

> For Ax = b add extra column b, Elimination and back
substitution

2 3 4 19 2 3 419
[A b]=1]4 11 14 55| - [U ¢|/=1|0 5 6 17
2 8 17 50 007 14

> Back substitution: The last equation 7x3 = 14 gives z3 = 2
» Work upwards The next equation 5z + 6(2) = 17 gives z3 = 1

» Upwards again The first equation 221 + 3(1) + 4(2) = 19 gives
xr1 = 4

A Aalto University Recap of Matrix Computations 19/27

School of Electrical Fatemeh Yaghoobi
B Engineering



Solving Linear Equations
Ax=Db: Aisnbyn

> For Ax = b add extra column b, Elimination and back
substitution

2 3 4 19 2 3 419
[A b]=1]4 11 14 55| - [U ¢|/=1|0 5 6 17
2 8 17 50 007 14

> Back substitution: The last equation 7x3 = 14 gives z3 = 2

v

Work upwards The next equation 5z5 + 6(2) = 17 gives zo = 1

» Upwards again The first equation 221 + 3(1) + 4(2) = 19 gives
xr1 = 4

» Conclusion The only solution to this example is x' = (4, 1,2)

A Aalto University Recap of Matrix Computations 19/27
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Cholesky decomposition

> Matrix decompositions: Describing a matrix by means of a
different representation using factors of interpretable matrices.
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Cholesky decomposition

> Matrix decompositions: Describing a matrix by means of a
different representation using factors of interpretable matrices.

> An analogy for matrix decomposition is the factoring of numbers,
such as the factoring of 21 into prime numbers 7 x 3.
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Cholesky decomposition

> Matrix decompositions: Describing a matrix by means of a
different representation using factors of interpretable matrices.

> An analogy for matrix decomposition is the factoring of numbers,
such as the factoring of 21 into prime numbers 7 x 3.

> Cholesky decomposition: A square-root-like operation for
symmetric, positive definite matrices A..
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Cholesky decomposition

> Matrix decompositions: Describing a matrix by means of a
different representation using factors of interpretable matrices.

> An analogy for matrix decomposition is the factoring of numbers,
such as the factoring of 21 into prime numbers 7 x 3.

> Cholesky decomposition: A square-root-like operation for
symmetric, positive definite matrices A..

» Matrix A can be factorized into a product A = LL " , where L is
a lower-triangular matrix with positive diagonal elements:

aix - A b o 0| [l 0 lm

anl - Onpn lpi -+ lun 0 - b

A Aalto University Recap of Matrix Computations 20/27
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Cholesky decomposition

» Cholsky factorization of A € R3*3

ail a1 asi lii1 0 0 [lin I
azi azy azg| =LL'" = |ly loa 0 0 I
asy azz2 as3 l31 I3 Ilaz] [0 O

Multiplying out the right-hand side yields:

2 la1l11 31111
A = |lalyy 12, + 13, l31l21 + 32122
Isilin lsilor + lsaloe 13, + 135 + 135

l31
l32
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Cholesky decomposition

» Cholsky factorization of A € R3*3

ail a1 asi liir 0 O [lin o
azi azy azg| =LL'" = |ly loa 0 0 I
asy azz2 as3 l31 I3 Ilaz] [0 O

Multiplying out the right-hand side yields:

2 la1l11 31111
A = |lalyy 12, + 13, l31l21 + 32122
Isilin lsilor + lsaloe 13, + 135 + 135

> There is a simple pattern

= /an, loe = V/az — 131, lss = Jazs — (B, +13,)

l31
l32

_ 1 _ 1 1
lor = gras1, Is1 = 77as1, ls2 = 5 (as2 — l31l21)
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Cholesky decomposition

> What is the benefit of using matrix decomposition? The
computations can be performed efficiently

Example: Computing the determinant of a matrix
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Matrix Calculus

> Differentiation of Univariate Functions
y=f(z),z,y e R Function f of a scalar variable z
Definition : Difference Quotient

by _ flatbx)— f(a)

Sx ox

[

Y

Figure: The average incline of a function f between zy and zy + dz
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Matrix Calculus

> Derivative
For h > 0 the derivative of f at z is defined as the limit

o o S h) = @)

= lim
dr  h—0 h
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Matrix Calculus

> Derivative
For h > 0 the derivative of f at z is defined as the limit

af S~ @
dz = h—0 h

> Partial Differentiation and Gradients
y = f(x),x € R of d,n variables 1, xa, ... 1zq

n

’ Function f depends on one or more variables x

Gradient: o500
6f o1

Vif=7-= cR"
0% | o
0xq,,

where e.g., g—afl = limy, o f(‘“*h’x%-};:ffdn)*f(x).
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Matrix Calculus

» Gradients of Vector-Valued Functions: For a fgnction

f:R% — R andavector x = [21 ... zq,] ,the vector of
value function is:

fi1(x)

f(x) = : € RIm

fdp (%)
Jacobian: The matrix of all first-order partial derivatives of
function f : R% — R js called Jacobian:

_ [of(x) of (x)
FX(X) = | 11 SR m
[ ofix) .. 9A(%)
ox1 Oxn
= : D | e RImxdn,
i (x) | Ofm(x)
ox1 0xq,,
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Linear and affine functions

> f:R% — R means f is a function mapping d,,-dimensional
vectors to numbers
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Linear and affine functions

> f:R% — R means f is a function mapping d,,-dimensional
vectors to numbers

> fislinearif f(ax+ By) = af(x)+ Bf(y)
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Linear and affine functions

» f:R% — Rmeans f is a function mapping d,,-dimensional
vectors to numbers

> fislinearif f(ax+ By) = af(x)+ Bf(y)

» when a is an d,,-dimensional vector, the function
f(x) =a'x = a1x1 + asra + ... + agq, x4, is the inner product

function
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Linear and affine functions

» f:R% — Rmeans f is a function mapping d,,-dimensional
vectors to numbers

> fislinearif f(ax+ By) = af(x)+ Bf(y)

» when a is an d,,-dimensional vector, the function
f(x) =a'x = a1x1 + asra + ... + agq, x4, is the inner product
function

> a function that is linear plus a constant is called affine
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Linear and affine functions

> f:R% — R means f is a function mapping d,,-dimensional
vectors to numbers

> fislinearif f(ax + By) = af(x)+ Bf(y)

» when a is an d,,-dimensional vector, the function
f(x) =a'x = ajxy + asws + ... + ag,xq, is the inner product
function

> a function that is linear plus a constant is called affine

> general formis f(x) = a'x + b, with a an d,,-vector and b a
scalar
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Linear and affine functions

> f:R% — R means f is a function mapping d,,-dimensional
vectors to numbers

> fislinearif f(ax + By) = af(x)+ Bf(y)

» when a is an d,,-dimensional vector, the function
f(x) =a'x = ajxy + asws + ... + ag,xq, is the inner product
function

> a function that is linear plus a constant is called affine

> general formis f(x) = a'x + b, with a an d,,-vector and b a
scalar

» suppose ¢ : R% — R is a nonlinear function
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Linear and affine functions

> f:R% — R means f is a function mapping d,,-dimensional
vectors to numbers

> fislinearif f(ax + By) = af(x)+ Bf(y)

» when a is an d,,-dimensional vector, the function
f(x) =a'x = ajxy + asws + ... + ag,xq, is the inner product
function

> a function that is linear plus a constant is called affine

> general formis f(x) = a'x + b, with a an d,,-vector and b a
scalar

» suppose ¢ : R% — R is a nonlinear function

> First-order Taylor approximation of g , near point x:
9(x) ~ g(%) + EE (2 — i) + ...+ a;d !2q, — @q,) affine
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Linear and affine functions

> f:R% — R means f is a function mapping d,,-dimensional
vectors to numbers

> fislinearif f(ax + By) = af(x)+ Bf(y)

» when a is an d,,-dimensional vector, the function

f(x) =a'x = ajxy + asws + ... + ag,xq, is the inner product
function

> a function that is linear plus a constant is called affine

> general formis f(x) = a'x + b, with a an d,,-vector and b a
scalar

» suppose ¢ : R% — R is a nonlinear function

> First-order Taylor approximation of g , near point x:

9(x) ~ (%) + B (w1 — @1) + ...+ az(d Y(aq, — iq,) affine
> We can write using inner product as g ~ g(X) + Vg(%) " (x — %)

where Vg(%X) = 8897(’;‘) %i—(f)
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