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Linear systems and 
their models

• Impulse response and weighting function

• Transfer function matrices

• Transfer operator

• Input-output-models

• State-space representation

• Frequency functions

• (Discrete-time systems)
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Impulse response and weighting function
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g the weighting function, which for linear systems is equal
to the (unit) impulse response.

In multivariable case g is p x m-matrix, where the 
element (k, j) is the input response in channel k, when
the impulse enters in input channel j.
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Impulse response and weighting function, cont..
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SISO:
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m > n:  G is ”strictly proper”
m = n: G is ”proper”
m < n: G is ”non-proper”
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 )5/(2)1/(1)(  sssG 2 inputs, 1 output

Transfer function matrix

System at rest at time t=0 (initial conditions zero)

At time 0 in channel 1 a unit step and in channel 2
unit impulse. The output becomes
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Transfer operator (derivative operator)
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compare to discrete-time systems

Note the ”connection” between the operator p in time
domain with the laplace-variable s.

Same in discrete time (operator q and variable z).
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Input-output representations
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the corresponding differential equation is
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State-space representation
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If D = 0, the system is ”strictly proper”, otherwise
”proper”
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Example: a heat exchanger
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From one representation to another

DuCxy

BuAxpxx




1. From state space to transfer function:
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Substituting p with  s gives the transfer function matrix
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Ex.  Heat exchanger
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Canonical forms
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SISO-model

Realizations:
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form

observable canonical
form



12

The MIMO case is much more difficult and general 
algorithms complicated.

Esim.  MISO  (many inputs, one output)
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Realizations from inputs1 and 2
to output: same A- and C-mat-
rices!



13

Of course Matlab can be used, Control System 
Toolbox commands

ss, tf
ss2tf
tf2ss
impulse
step

For example.  Gtf=tf(1,[1 2 3]);
Gss=ss(Gtf);
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Properties of linear systems

• Solution of the state equation

• Controllability and observability

• Poles and zeros

• Stability

• Frequency response and frequency functions
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Solution of the state equation
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Note.  A corresponding discrete-time system can be
derived from this solution by assuming that the control
signal remains constant between sampling instants (ZOH=
zero order hold).
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Change of the state variable

1 Tx T is an invertible square matrix
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1 new realization

The similarity transformation; matrices A and TAT -1

are similar.



17

For a diagonal matrix
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The i:th component of the solution is
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in which Bi is the i:th row of matrix B. The components
xi  do not depend on other components of x.  
xi corresponds to the mode of i

If Ci is the i:th column of the matrix C , it follows

)()()()()( 2211 tDutxCtxCtxCty nn  

The output can be seen as a weighted sum of the modes.
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Controllability and observability

• Structural properties:  stability, controllability 
(reachability), observability

• Describe how the system output depends on inputs 
and internal ”states”

• Kalman, 1960’s (pioneering period of modern control 

engineering)



20

State *x is controllable, if there exist a control that
drives the system in a finite time from the
state x* to the origin of the state space (note
the mistake in the textbook) 

The system is controllable, if all states are controllable.

State is non-observable, if0* x

*( ) 0, 0   and   (0)u t t x x   0,0)(  tty

The system is observable , if it lacks non-observable states.
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The controllable states are the range of the linear map
given by the controllability matrix

 BABAABBBAS n 12),(  

The system is controllable, if the rank of the 
controllability matrix is full.

In the SISO case S(A,B) is a square matrix, which must
have a non-zero determinant, in order the system to be
controllable.  More generally the rank of the matrix
must be checked.
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The non-observable states form the kernel of the linear map























1

),(

nCA

CA

C

CAO  (observability matrix)

The system is observable, when the observability matrix
has full rank.  For a square matrix the determinant must
be non-zero.
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Note:

•If the realization can be transformed to the controllable
canonical form, the system is controllable.

•If the realization can be transformed to the observable
canonical form, the system is observable. 

•A SISO-system is both controllable and observable, when
there are no pole-zero cancellations in the calculation of
the transfer operator (transfer function).

•When a state-space representation is both controllable and
observable, it is the minimal realization of the system; 
there are no realizations of lower degree that would 
generate the same input-output behaviour.
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Pole-placement:
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Lxu 

xBLAx )( 

mxn-matrix L can be found such that arbitrary eigenvalues
are obtained, if and only if

 BABAABBBAS n 12),(   has full rank
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Correspondingly, the nxp-matrix K can be found such that
the matrix A-KC has arbitrary eigenvalues, if and only if
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Stabilizability and Detectability

If the system is not controllable, still the controllable
modes (eigenvalues) can be influenced by state feedback; 
non-controllable modes cannot be influenced.

But if non-controllable modes are (asymptotically) stable
the system is called stabilizable.

Definition: The system (A,B,C) is stabilizable, if there
exists a matrix L such that A-BL is stable (all
eigenvalues in the stability region = left half plane or inside
the unit circle).  The system is detectable, if there exists
a matrix K such that A-KC is (asymptotically) stable.
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Poles and zeros

The eigenvalues of the system matrix A are important in the
charcterization of the system behaviour (modes).

tpielinear combinations

Definition:  The poles are the eigenvalues of A, where A is
the system matrix of the minimal realization.  The 
dimension of a pole corresponds to the multiplicity of the
corresponding eigenvalue. The  pole polynomial is the
characteristic polynomial of A.

)(det AI 
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To form realizations for MIMO systems is generally
difficult.  It would be nice to have a method to calculate
the poles directly from the transfer function matrix G(s).

Note.  SISO-systems do not have such problems; when
all possible cancellations have been made, the pole
polynomial is the denominator of the transfer function.

Matlab:  Gss = minreal(ss(Gtf));

(starting from the transfer function matrix Gtf the command
ss forms a state-space realization and then the command
minreal forms the minimal realization)

But programs are only programs!  
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The minors are obtained as determinants of the sub-
matrices.

Ex.  The matrix 
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1, 2, 3, 4, 5, 6

The largest minors correspond to the largest sub-
determinant (in the example the 2x2-cases)
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Theorem:  The pole polynomial is the least common
denominator of all (not identically zero) minors.  The poles 
of the system are the zeros of the pole polynomial.

Ex.
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Poles:  -2 and –1 (multiplicity two)
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The realization can now be formed
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which leads to

The order of the system is three (number of state variables) 
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g11=tf(2,[1 1]);

g12=tf(3,[1 2]);

g21=tf(1,[1 1]);

g22=tf(1,[1 1]);

Gtf=[g11 g12;g21 g22]

Gss1=ss(Gtf)

Gss2=minreal(ss(Gtf))

(the same result in this example case)
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Note that the poles are the denominators of the transfer
functions in the transfer function matrix.  ”Minor analysis”
is needed in the determination of pole multiplicities, which
are again needed to form the minimal realization.

Zeros
The zero of a SISO-system is such s, which makes the
value of the transfer function zero (to lose rank in the
multivariable case).  The zeros of a square matrix G(s) are
the poles of 1( )G s
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Definition:
The system zeros (transmission zeros) are those s, for
which the rank of the matrix
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drops (is not full).  The polynomial with these zeros
s, is the zero polynomial.

For the system with equal number of inputs and outputs, 
the zero polynomial is det M(s).  In other cases the zeros
can be determined directly from the transfer function
matrix according to the following theorem.



35

Theorem:  Form the maximal minors of G(s) normalized
such that the denominators contain the pole polynomial.
The zero polynomial of the system is the greatest common
divisor of these.  The zeros are the zeros of this
polynomial.

Ex.
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1)(  sszThe zero polynomial

and the system has one zero s = 1.

Note.
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The pole polynomial is (verify!)  –s+1
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Stability of linear systems

Definition: The stability region of a continuous system is
the LHP = left half plane,  imaginary axis excluded.  For a
discrete-time system the corresponding region is the inside
of the unit circle.

For linear systems

and so

BIBO-stable, if   
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Result: A linear time-invariant system is BIBO-
stable, if and only if its poles are in the stability region.

Result: A linear time-invariant system is asymptotically
stable, if and only if the eigenvalues of the system matrix
A are in yhe stability region.  If the system is stable,all
eigenvalues are in the stability region or on its boundary.

Definition: The system is non-minimum phase, if
it has at least one zero outside the stability region.
Otherwise the system is minimum phase.
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Frequency response and frequency 
functions

Consider the transfer function matrix
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How to define the gain of a MIMO-system?

S

u y

m kpl. p kpl.

The frequency response (Bode) of each channel separately
does not give full information about the behaviour of the
system (interconnections; different ”directions” of the 
multi-channel input function .

What about the eigenvalues of G?  But they are defined
only for square systems, and do not generally give a
reliable view about the gain of a multivariable system.
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Solution:  Singular values

Consider the mapping

Axy  A  p x m- matrix
x  m x 1-vector
y  p x 1-vector

(complex values are allowed)

Definition: The hermitian matrix (adjoint) of A, *A
HA

is obtained by taking the transpose and then the complex
conjugate of each term

Ex.  iiA
i

i
A 321,

32

1 * 












or
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A=[1+i;2-3i]
A =

1.0000 + 1.0000i
2.0000 - 3.0000i

A'
1.0000 - 1.0000i   2.0000 + 3.0000i

A.'
1.0000 + 1.0000i   2.0000 - 3.0000i

Matlab:  ’ means actually taking the conjugate transpose.  
For an ordinary transpose,write  .’

For real matrices the shorter form is of course used also
in the case of an ordinary transpose.
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The familiar rules are valid, for example. ***)( ABAB 

Definition: A complex-valued matrix is hermitian,
(self-adjoint), if

AA * (cf. symmetric for real matrices)

Hermitian (and symmetric) matrices have real eigenvalues.

Definition: Let A be a hermitian matrix.  It is
positive definite, if the scalar x*Ax > 0, for all
non-zero vectors x.

x*Ax > 0 (often written as A > 0)
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Correspondingly,  A is negative definite, if
x*Ax < 0 (often written as A < 0)

A is negative semidefinite, if

0A

A is positive semidefinite, if

0A

Note that if A is hermitian, the square form x*Ax
is always real.

Result:  A hermitian A is pos.def., when all eigenvalues are
positive; pos. semidefinite, when all eigenvalues are
non-negative.

* 0x Ax 

* 0x Ax 
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Corresponding results are valid also in the case of negative
definite matrices.

To check the positive definitness of a symmetric, real
matrix: the Sylvester rule.
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Well, the 2-norm of x is
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So AxAxAxy **22 

Let us return to study the gain of the map Axy 
How ”big” is y when compared to x?

The matrix AA*

m ,,, 21  ; largest 1 and smallest m

is hermitian, eigenvalues real
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Then 2
1

**2
xAxAxxm  

and the definition follows

Definition:  The singular values of  A are ii  

in which the values i AA*

the largest eigenvalue is denoted as )(A

)(A

and the smallest one as

When y = Ax, then )()( A
x

y
A  



The  gain of the matrix is between the smallest and 
largest singular value.  The maximum (supremum) is a norm.

are the eigenvalues of

(Rayleigh-Ritz
inequality)



48

)(AA  The induced matrix norm corres-
ponding to 2-vector norm

The singular values are generated naturally by the
singular value decomposition (SVD):

Result:  For any real or complex matrix A there always
exists a factorization

*VUA  (SVD)

A  (n x m),  U (n x n),  V (m x m)  

U and V unitary IVVIUU  ** ,

(cf. orthogonal in the case of real matrices)
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 (n x m) is a real matrix, and the singular values of A
are located in the main diagonal in descending order.
If A is complex, U and V are also complex; otherwise 
real.

The columns of U and V are the unit eigenvectors of
AA* and A*A, respectively.  They represent the output
and input directions.

Matlab:   )(,, AsvdVSigmaU 

Frequency functions:
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The gain of the system at freq.  is between the
)( iGsmallest and largest singular value of

Corresponding to Bode diagrams in SISO systems
the singular values are plotted as functions of frequency; 
the gain in all ”directions” is between the smallest and
largest singular value.

Norm of the frequency function:

)G(i max 


G (the largest singular value)

uGy  G is the system gain
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Ex.  The calculation of singular values is difficult.
In Matlab:   the sigma command is helpful.

A=[-0.21 0.2;0.2 -0.21];

B=0.01*eye(2);

C=eye(2);

D=zeros(2,2);

sigma(A,B,C,D)
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Frequency (rad/sec)
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What about ”directions” ?

Transfer function
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Look at the frequency s = 0

g0=[0.21 0.2;0.2 0.21]/0.41;

[V,D]=eig(g0'*g0)
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0.7071    0.7071

-0.7071    0.7071

0.0006         0

0    1.0000

=V

=D

Singular value 11  is related to the direction  T11

024.00006.0   T11 

The input form 










1

1
0 u has a very minor influence

to the output

input directions

and to

Result:

[0.7071 0.7071]'

[0.7071 0.7071]'

eigenvalues
0.0006 and 1.0
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Useful Matlab-commands:

ss2zp, zp2ss, tf2zp, zp
tzero
pole
pzmap
lsim
eig, roots
bode
sigma
obsv, ctrb


