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Discrete-time systems: 
discretization, models and their 

properties

Process controlled by a digital controller 

ProcessController D/A

A/D

r(tk) +
_

e(tk)

y(tk) y(t)

y(t)
u(t)u(tk)

Department of Automation 
and Systems Technology 

a.

Two main design approaches: a. discretize the 
analog controller, b. discretize the process and
do the design totally in discrete time 

b.

Let us consider the design approach b: A 
discrete system from the controller viewpoint 

ProcessController D/A A/D
r(tk) y(tk)u(tk)

y(tk)
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A continuous function f(t)

Set of integers Z

Sampling instants { tk : k  Z }

Sequence { f(tk) : k  Z }

Sampling of continuous-time signals  
Sampling of continuous-time signals 

Periodic sampling

Sampling interval, h

Sampling frequency, fs
Sampling angular frequency s

Nyquist frequency, fN

N

Zero-order-hold ZOH and sampling  

A continuous process is 
described by a linear state-
space-representation.

ProcessD/A

{y (tk)}y(t)u(t){u (tk)}

A/D

The matrix exponential

Let A be a square matrix, define

which is always convergent.

From the definition
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The solution to the homogenous set of differential equations

is then

The term is called the  state transition matrix
(in this context).

The matrix exponential

Solution by using the Laplace transformation

It follows

The solution is obtained by the inverse transformation

The matrix exponential

By comparing to the previous solution it follows that

which is one way to solve the state-transition matrix.

The matrix exponential Solution of the state equation
Solution for the input-output representation

is
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in which is the above state transition matrix.

To prove the solution check the initial condition and
differentiate the solution to see that the original
differential equation holds.

Solution of the state equation Zero- order- hold ZOH and sampling  

Solution at any time t after
the sampling instant tk

u(t) is constant between
sampling instants, ZOH

Change the integration
variable s’ = t - s

A state transition matrix 
and control matrix  are
obtained (independent of x
and  u).

Zero- order- hold ZOH and sampling  

At the next sampling instant 

Zero- order- hold ZOH and sampling  

By a periodic sampling the equations become

Usually this is written in the form (h is constant)
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How to solve for   and  ?

• Symbolically
Eg. by using the Laplace transformation
By symbolic programs (Maple, Mathematica, …)

• Numerically
Eg. by the series expansion of the matrix exponential 
function
By numeric software (Matlab)

Example. Discretization by direct calculus

Sampling interval h = 0.1

is of the 
form

Example.  Discretization by using the series 
expansion

State-space representation of the double integrator

Example.  Discretization by the series expansion

The corresponding discrete-time model becomes
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Example.  Discretization by using the Laplace 
transformation

State-space representation of the DC motor

Example. Discretization by the Laplace ….

The discrete-time model is obtained

Pulse transfer function, H(z)

A pulse transfer function H(z) can also be calculated directly 
from G(s).

ZOH

zero order
hold

G(s)

continuous
process

sampling

{u(kh)} {y(kh)}
u(t) y(t)

H(z)

Pulse transfer function, H(z)
After ZOH u(t) consists of step functions.  The output y(t) is a 
set of step responses, which are sampled at constant intervals 
h.

Discrete pulse transfer function and continuous transfer 
function correspond to each other, if the outputs are equal at 
the sampling instants.
The step response of the continuous system at the sampling 
instants (t = kh)



10/13/2016

7

Pulse transfer function, H(z)

The step response of the discrete system

Make these equal; the final result follows

The alias effect   

Two different continuous
signals can be fitted to
the pulse train  (h = 1)

y1(t) = sin(0.2π t)
y2(t) = sin(1.8π t)

Actually, an indefinite
number of continuous
signals can be fitted.
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y(t)=sin(0.2*pi*t)
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y(t)=sin(1.8*pi*t)
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So,  if we have a discrete pulse sequence only, how can we
know what frequency the real continuous time signal has? 

Moreover: the continous time model corresponding to a discrete
model is not always unique.  
(Take the harmonic oscillator G(s) = 2/(s2+2), 
do a realization and discretize by using  = +n2/h, n = 0,1,2,...)

These examples show the alias effect for the first time.  It is
very dangerous.  We will return to this later in the course.

Linear time-invariant systems: The pulse transfer function, 
weighting function, pulse response and convolution sum

Input-output: Z-domain

Input-output: time domain,
convolution sum

The z-transform of the weighting function h(k) is the 
pulse transfer function H(z).
The (im)pulse response coincides with the weighting function
from the time that the pulse enters.
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Discrete system:

Solution by 
direct 
recursive 
calculus 
starting from a 
given initial 
state x(k0) up 
to any time k .

Input-Output-models, I/O-models, pulse response Input-Output-models, I/O-models, pulse response

But for a state representation the pulse response is 
calculated as 

pulse 
response (assume 

Corresponding to the differential operator p used in 
continuous systems  a (forward) shift operator q is defined for 
discrete systems

Shift-operators

By using the shift operator input-output relationships (difference 
equations) can easily be described

Difference equations can be described by polynomials

Shift-operators

A backward shift operator  q-1 can also be used 
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Shift-operators

Resiprocal polynomials

Polynomial representations are used, because in some 
control design methods they are more natural to use than
state-space representations.

Pulse-transfer operator, H(q)

The pulse transfer operator is an  I/O-representation obtained 
by eliminating internal variables.  E.g. from state 
representation

Pulse-transfer operator, H(q)

From polynomial representations

or

Representation by reciprocal polynomials

Pulse-transfer operator, H(q)

Consider a simple example of a pulse transfer function. 

We obtain

Starting from IO-difference equation the calculation is equally 
easy
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Pulse-transfer operator, H(q)

Form A- and B-polynomials

The pulse transfer operator is

Pulse-transfer operator, H(q)

Let us calculate the same with the  q-1-operator

The result becomes

Pulse-transfer operator, H(q)

All methods lead to the same pulse transfer operator

Pulse-transfer operator, H(q)
•The characteristic polynomial of the system is the 
denominator A(q) of the pulse transfer operator.

•The poles of a discrete system are the zeros of the 
characteristic polynomial.

•The zeros of a discrete system are the zeros of the 
numerator polynomial  B(q). 

•More delay means more pole excess d.
•The order (dimension)  of the system is the same as the 
dimension of the state-space representation or the number of 
poles.
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Poles and zeros
Some basics from matrix calculus. For the pulse transfer
operator we can write

where ’adj’ means the adjungate matrix.  For the matrix
 the eigenvalues λi and eigenvectors ei are defined as follows

There exist non-zero eigenvectors when

Poles and zeros

The poles are the roots of the characteristic polynomial. They
Belong to the set of eigenvalues of the system matrix Φ.

Consider the polynomial

The corresponding function for the square matrix A is defined as

Result: Let the eigenvalues of A be λi and the corresponding 
eigenvectors ei.  It holds

Poles and zeros

meaning that f(λi) is the eigenvalue of f(A) and the 
Corresponding eigenvector is ei.

The proof is straightforward by writing the above formula and 
using repeatedly the definitions of eigenvalue and eigenvector
 Exercise.

Poles and zeros
The poles of a discrete system are the zeros of the 
denominator of H(z).  The zeros are the zeros of the 
numerator.  The poles are also eigenvalues of the the system 
matrix Φ.

From the location of poles in the complex plane stability, 
oscillations and speed of the system can be deduced.

The poles of a continuous n:th order system are mapped to 
the discrete system poles according to:

poles:
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Poles and zeros

Discrete system

poles:

=>

A simple relationship for the mapping of zeros does not hold.  
Even the number of zeros does not necessarily remain 
invariant.  The mapping of zeros is a complicated issue.

Poles and zeros

Mapping

for

Unstable inverse, non-minimum phase systems

•A continuous time system is non-minimum phase, if has 
zeros on the right half plane (RHP) or if it contains a delay.

•A discrete system has an unstable inverse, if it has zeros 
outside the unit circle.

•Zeros are not mapped in a similar way as poles, so a 
minimum phase continuous system may have a discrete  
counterpart with an unstable inverse and a non-minimum 
phase continuous system may have a discrete counterpart 
with a  stable inverse.

Selection of the sampling rate

• The proper choice of the sampling interval is very 
important.  Too low sampling frequency may lose so much 
information that the control performance deteriorates and 
the system dynamics is lost.

• Too high sampling rate increases the burden of the 
processor; also, it may lead to discrete representation with 
bad numerical properties.

• For oscillating systems the sampling interval is often tied to 
the frequency of the dominating oscillation.  For damped 
systems the sampling interval is usually chosen to be in 
relation to the time constant.
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Selection of the sampling rate

Nr means the amount of samples during the rise time.

For a self-oscillating system (2nd order, damping ratio and 
natural frequency     ) the rise time is:

A usual sampling rate is                        which leads to a 

”Rule of Thumb”

Selection of the sampling rate

Sampling examples for 
a sinusoidal and 
exponential signal.  

a.  Nr = 1
b.  Nr = 2
c.  Nr = 4
d.  Nr = 8


