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 Machine learning basics  
 
There are several machine learning (ML) courses in Aalto so this 

lecture will not be very broad or deep. 

  

Almost all science is fitting models to datasets. Experiments are 

designed to collect data from which knowledge is extracted by 

using accepted theories. The experimental data is fitted to 

theories if they exist (natural science vs. human science).  

 

Now we can have a lot of data which is not connected to theories, 

like images, but there is some information in this data. How can 

we find information or correlations form vast data sets. Answer: 

Machine learning  

 

ML is used in many fields, like pharmaceutical industry and gene 

studies (bioinformatics), image and speech recognition, machine 

translation, etc..  

We meet the ML every day in applications like Apple Siri and in 

many net advertising sites.  

 

Huge amount of ML methods has been collected to a python library 

Scikit-learn. This is a very convenient way to do ML computations.  

 
The sklearn is easy to use in python or in Jupyter notebooks  

 
import sklearn  
from sklearn.model_selection import KFold  
from sklearn.model_selection import GridSearchCV, train_test_split  
from sklearn.ensemble import GradientBoostingRegressor  
from sklearn.ensemble import RandomForestRegressor  
from sklearn.kernel_ridge import KernelRidge  
import matplotlib.pyplot as plt  
 

Machine learning classes  
 
I used the https://www.ibm.com/cloud/learn/machine-learning web-page.  

 
Supervised learning (SL): The aim is to learn known outputs and find 

good descriptors for the system. This is the most relevant ML for 

materials science. This is also a relatively easy ML problem.  

 

 
 



 

 

 
   

 

                         

 

 

 

Unsupervised learning (UL): The aim is to classify data and 

find patterns in it. Example: understanding hand-written text. This 

is more difficult and usually a lot of data is needed. Typically, the 

UL methods will cluster data with some similarity methods.  

 

 
 
Semi-supervised learning: A mixture of the two methods above. For 

example, in some cases the output is known. Example: we can know some 

of the hand-written letters. If the data set have 100 000 examples 

and we know 1000 of them. The machine need to learn rest of them.  

 
There are several ML methods, like neural networks, decision trees, 

regression algorithms. We came to them a bit later.  
 

Data quality is an important aspect. Is the data balanced, free of 

major errors, is there duplicated data, are there outliers, what is 

the “noise level” in the data, etc. These are usually difficult 

questions and hard to answer before the analysis. One still need to 

make sure that the data quality is as good as possible.  
 

How large the data set should be? As large as possible, but in  
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materials science the data set are usually not very large. Data size 

of below 100 is challenging since all ML methods rely on statistic. 

1000 is OK and larger sets are even better.  

 
The quality of the data set can be tested in many ways. One simple 

way is to test the predictions with ever enlarging data sets. Below 

blue is the training error and red is the test error. (The analysis 

is based in 10-fold cross validation, sorry of the low quality 

figure) 

 

 

 

Validation  
 
One of the main topic in ML is the method validation. To that end the 

original data set is divided to training and test set. The training 

set is used to teach the ML methods and the data in the test set is 

NOT use in the training. The test set size is typically 2-5 % of the 

data. The test set is chosen randomly to form the data. This 

procedure can be repeated with many data divisions. 

 



 

 

 

Cross validation: One can make the training/test data partitioning 

several times. This approach produces several ML models and test 

and in this way quality of the ML models can be tested better than 

on single data partitioning. 

 

 

 

 

 

Each training data set will give different fit the model. With cross 

validation we can get statistic of the fit.  

 

One can also leave some data out of the cross validation data and use 

that as second level test set or publication set. The publication set 

is never used in training. 

 

 

 

 

 

(This wiki page is very good: https://en.wikipedia.org/wiki/Cross-validation_(statistics) )  

 

ML methods parameter optimising  
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All ML methods contain parameters and they need to be optimized to 

ensure that the ML methods is working optimally. In sklearn the 

default parameters are quite good (if the data set is reasonably 

large). The teaching is simple if one is using GridSearchCV methods. 

There are more sophisticated methods. (for all this see the Sklearn 

manual, https://scikit-learn.org/). 

model = RandomForestRegressor()  
 
parameters = {"n_estimators": range(20, 80, 10), "min_samples_split":[2,3]} # for RF  
 
clf = GridSearchCV(model, parameters, cv = 10, verbose=2)  
output : score, parameters 

-0.4466248626907848 {'min_samples_split': 3, 'n_estimators': 30}  

-0.45742261440125276 {'min_samples_split': 3, 'n_estimators': 50}  

-0.4587929994651951 {'min_samples_split': 3, 'n_estimators': 60}  

-0.4597841296896924 {'min_samples_split': 3, 'n_estimators': 40}  

-0.4648287622992993 {'min_samples_split': 2, 'n_estimators': 40}  

-0.4660148003169513 {'min_samples_split': 3, 'n_estimators': 70}  

-0.4662565949899477 {'min_samples_split': 2, 'n_estimators': 60}  

-0.4711060835686439 {'min_samples_split': 2, 'n_estimators': 50} 

model = GradientBoostingRegressor()  
 
parameters = {'learning_rate': np.arange(0.05, 0.3, 0.05), "loss": ['ls', 'huber'], "n_estimators": 
range(20, 80, 10), 'subsample': [1.0, 0.9]}  
 
clf = GridSearchCV(model, parameters, cv = 10, verbose=2) 

 

 

 
 
 
 
Overfitting  
 
In every complex model there is a risk of overfitting. This is easy 

to demonstrate with polynomial fitting. If a N-order polynome is 

fitted to N data points it will fit perfectly to the points but in 

between the data can be very bad. If we have test set of points we 

can easily see the overfitting. 
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https://scikit-learn.org/


 

 

 

 

 

 

 

 

 

The best model is not the one that fit best to the data but that which 

have the best predictive power.  



 

 

 

 

The example to order-N polynome is trivial but the overfitting is 

a real problem in every ML model. Naturally the model need to be 

good enough, so one can also underfit the problem. To find good 

balance a lot of testing is needed.  

 

Machine learning methods  
 
There are several ML methods. Many of them have been implemented to 

sklearn python package.  

 
Methods for labeled data (we know the data objects, like Pt(111) 

surface or some molecule. This sounds trivial but if we have millions 

of pictures and we need to know what is in them (a cat or a car or a 

human) the situation is more difficult. The labeled data is 

considered expensive since it need humans to make the labelling.)  
 
• Regression algorithms: Linear and logistic regression are examples 
of regression algorithms used to understand relationships in data. 

Linear regression is familiar to all scientists. More sophisticated 

regression algorithm is called a support vector machine.  

 
• Decision trees: Decision trees use classified data to make 
recommendations based on a set of decision rules. For example, a 

decision tree that recommends betting on a particular horse to win, 

could use data about the horse (e.g., age, rider, winning percentage, 

pedigree) and apply rules to those factors to recommend an action or 

decision.  
 

We have used a lot the RandomForest method. This method will build 

several decision trees (typically 100) and the final answer is the 

majority answer. Random forests are frequently used as "blackbox" 



 

 

models, as they generate reasonable predictions across a wide 

range of data while requiring only reasonable amount of data. 

 

 
 

• Instance-based algorithms: A good example of an instance-based 
algorithm is K-Nearest Neighbor or k-nn. It uses classification to 
estimate how likely a data point is to be a member of one group or 

another based on its proximity to other data points.  

 

Methods for unlabeled data (opposite the labeled data, we do not need 

to know the object. Very often the ML task is to identify them.)  

 
• Clustering algorithms: Think of clusters as groups. Clustering 
focuses on identifying groups of similar records and labeling the 

records according to the group to which they belong. This is done 

without prior knowledge about the groups and their characteristics. 

Types of clustering algorithms include the K-means, TwoStep, Kohonen 

clustering and UMAP.  

 
• Association algorithms: Association algorithms find patterns and 
relationships in data and identify frequent ‘if-then’ relationships 

called association rules. These are similar to the rules used in data 

mining.  

 

• Neural networks: A neural network is an algorithm that defines a 

layered network of calculations featuring an input layer, where data 

is ingested; at least one hidden layer, where calculations are 

performed make different conclusions about input; and an output 

layer, where each conclusion is assigned a probability. A deep neural 

network defines a network with multiple hidden layers, each of which 

successively refines the results of the previous layer. 



 

 

Often the labeled data is needed (or it is very useful) for teaching the 

unlabeled algorithms. 

 

Numbers 
 
Example of patter recognition (sample 9300 numbers)  

 

 
 



 

 

Clustering with UMAP method. There are 10 clusters, some are well 

separated some bit less. The UMAP cluster well the data, but the 

order of the cluster is not very clear. There are also few errors.    

 

 

 

 
Descriptors  
 
Descriptors are very important in materials science/chemistry. We 

should know the geometry and other properties of the material or 

molecules but how we will tell that to a machine. The descriptors can 

be almost anything.  

 
We did recently a study of HER (hydrogen evolution reaction) on N 

doped carbon nanotubes taking into account several defects. Overall, 

there was 8 different defects and several hydrogen configurations. 

Totally we did ca. 7000 DFT calculations. The output was the hydrogen 

binding energy. (Kronberg, Lappalainen, Laasonen, JPCC, 125, 15918 

(2021)). In this project we used the Random Forest method and a very 

new Shapley analysis of the data. 
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This project had rather complex descriptors. This example is not 

the easiest one, but it illustrates that the very different 

descriptors can be used. 



 

 

 

One interesting descriptor is Extended-connectivity fingerprint 

(ECFP). It is a systematic tool that list atoms environment in 

molecules. (Ref: Rogers and Hahn, J. Chem. Inf. Model. 2010, 50, 

5, 742–754). The 0 level is the atom itself, the level 1 contains 

the atoms neighbors and so on. 

 

 

 

 



 

 

 

Next one can list all the different ECFP’s of all the studied 

molecules. There are quite many of them but still surprisingly few. 

We did a project in which there was 7000 different molecules and we 

found 1024 ECFP4’s  

 

Coulomb matrix 

Coulomb matrix is a simple descriptor which include the 

electrostatic interaction between nuclei. It is calculated with 

the equation 

 

 
where Zi is the nuclear charge and Rij atom distances (in Å’s). An 

example methanol:  



 

 

 
 

Here the first row is the C, second O, third H(-C), H(-O), H(-C) and H(-

C). As one can seen the order of the row is arbitrary. Once we have the 

molecular structure the Coulomb Matrix is easy to build. For a large 

molecules the CM become large (N(N-1)/2) numbers. Also the order of atoms 

matter.  

 

 
 
Results  
 
 
In the NCNT project the RF model learned the hydrogen binding (HER) 

data well. The parity plot compares the computed (DFT) values to the 

ML predictions. 



 

 

 

As one can see, where there is a lot of data the learning is good 

and at the very negative values the scattering is larger. The 

accuracy of the trained data is below kcal/mol, which is much 

better than the DFT accuracy. One can also see the effect of the 

size of the sample. We did some PBE0 calculations. Here the data 

set is much smaller and the learning errors are larger.  

 

Figure 3: Unbiased generalization performance of the RF models based on 10-fold nested CV on the 

GGA and hybrid HF/DFT datasets. The solid bars denote a lower bound of the respective averaged 

errors while the hatched parts indicate the variability as twice the standard deviation across the outer 



 

 

CV folds. The average coefficients of determination with standard deviations are annotated above the 

bars. The limit of chemical accuracy is marked for reference by the dashed line. 

The next deep question is how the descriptors contribute to the 

output. This is usually addressed on rather superficial way. 

Typically, the methods like RF will return the weight of the 

descriptors. This is useful if some of the descriptors have low 

weights. Then one can reduce the descriptors and still get quite 

good predictions with less descriptors. 

 

 

Explainable AI, the Shapley analysis  
 
Rather recently a very interesting Shapley additive explanation 

(SHAP) methods has been introduced. It will approximate the model 

output with additive functions ϕ, Shapley values. The ML predicted 

value f can be written as 

 

𝑓(𝑥) = 〈𝑓〉 +∑𝜙𝑗(𝑓, 𝑥)

𝑗

 



 

 

where <> is the average of f and x are the descriptors. Even this 

looks very simple the computation of the Shapley values is 

complicated. The brake-through publication is form 2017 (Lundberg, S. M.; 

Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process Syst. 2017; pp 
4765–4774.)  
 

The SHAP analysis gives much more information of the ML procedure. We 

can analyse the individual descriptor contribution to the output. If 

we have chemically meaningful descriptors, we can learn a lot more 

form the results. Below is an example of the molecules redox 

potential prediction. The numbers refer to the ECFP4 features in the 

molecules (0 means that they are not present and 1 that they are). 

Note that the 1015 lowest weight descriptors have very small 

contribution and the descriptor 1010 has very large contribution. 

 

 

 
 
The SHAP analysis has results to a new subfield of ML, the 

explainable artificial intelligence (XAI). There are several 

problems where it is very useful to understand where the ML 

predictions come from. Clearly materials development projects 

belong to this class. 

 



 

 

In SHAP we can also analyse features role in general. Below if the 

feature LSTAT has high value (red) it will have a negative 

contribution (and vice versa). The feature RM has an opposite 

effect and feature B has little effect.   

 

 
Prediction of pKa’s  
 
One of the examples is dealing with prediction pKa’s on various 

solvents. The input data contain the pKa’s in water, solvatochromic 

parameters of the solvent: π,  α, β,  total charge and the charge of 
the acid. The reaction is very simple  AH + B <-> A-  + BH+ 

 

The data is from publication 

 

M. Busch, E. Ahlberg, K. Laasonen, Universal Trends between Acid Dissociation Constants in 

Protic and Aprotic Solvents, Chemistry - A European Journal. 12, 202201667. 

https://doi.org/10.1002/chem.202201667 

 
The DFT based computational model is able to predict the pKa’s 

very well. Note that the raw DFT data need to be corrected with  

pKa(Exp) = 0.49*pKa(DFT) + 3.2 

 

 

https://doi.org/10.1002/chem.202201667


 

 

 
The solvatochromic parameters predict well the pKa’s 

 
Now it is interesting to see how ML can predict the DFT pKa’s. 

This is an exercise and you should play with the model.  

 

Below is the Random Forest prediction with learning data.  



 

 

 

 
 
Unsupervised Learning  
 
We have now several projects related to Unsupervised Learning or 

clustering. The main idea is to rationalize chemical reactivity.  

 

Clustering  
 

But first focus on clustering. At low dimensions we are good at 

seeing clusters. One of the simplest clustering algorithm is 

KMeans. It will find the centers of the clusters.  

 

import numpy as np 

from sklearn.datasets import make_blobs 

from sklearn.cluster import KMeans 

from sklearn.metrics.pairwise import pairwise_distances_argmin 

import matplotlib.pyplot as plt 

 

np.random.seed(0) 

 

batch_size = 45 

centers = [[2, 2], [-2, -2], [2, -2]] 

n_clusters = len(centers) 

X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.9) 

 



 

 

k_means = KMeans(init="k-means++", n_clusters=3, n_init=10) 

k_means.fit(X) 

 

k_means_cluster_centers = k_means.cluster_centers_ 

k_means_labels = pairwise_distances_argmin(X, k_means_cluster_centers) 

 

fig = plt.figure(figsize=(4, 4)) 

fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9) 

colors = ["#4EACC5", "#FF9C34", "#4E9A06"] 

 

# KMeans 

ax = fig.add_subplot(1, 1, 1) 

for k, col in zip(range(n_clusters), colors): 

    my_members = k_means_labels == k 

    cluster_center = k_means_cluster_centers[k] 

    ax.plot(X[my_members, 0], X[my_members, 1], "w", markerfacecolor=col, 

marker=".") 

    ax.plot(cluster_center[0],cluster_center[1],"o", 

        markerfacecolor=col,markeredgecolor="k",markersize=6,) 

ax.set_title("KMeans") 

 
 

This is too simple. The clusters can and will have more complex 

shape. One more sophisticated clustering method is 

AgglomerativeClustering with different linkage methods. (Details in 
sklearn manual)   
  

AgglomerativeClustering(linkage="ward",”complete”, “average”, “single”) 
 

There is probably no single method to find nice clusters in all 

cases. Almost any method will find isolated clusters.  

 

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering


 

 

 
 

 

In real problems we have several descriptors, easily 256 to 1000. 

We can of course find clusters in 1000 dimensional space but it is 

very difficult to learn anything from this. We need dimensional 

reduction.  

 

Scaling  
 
The descriptors have usually very different values. The values can 

be used as they are or they can be scaled. This will have a big 

effect to the clustering. It is recommended to use the scaled 

variables.  

 

 

Dimensional reduction 
 

The dimensional reduction (DR) means that we need to find few 

vectors that describe well the high dimensional problem. This is 

not an easy task. One method is PCA (Principal component analysis) 

which basically create a new coordinate system of the data. The 

data varies most on the first component and less with the second, 

etc.  



 

 

The length of these vectors will tell the variation. If they are 

similar the data is randomly distributed.  

 

Now we can reprint the data with few lowest vectors is this new 

coordinate system. We may find clusters better in this way.   

 

The use of PCA is easy pca = PCA(n_components=2)  
 
There are several other DR methods. Another simple one is Singular 

Value Decomposition (SVD). It will work in similar way as the PCA.  
 

 
 

PCA results can be analyzed by two numbers. The variance will 

describe how much the data varies on different components. The 

variance is usually larger on the first component. The other are 

the eigenvalues. The eigenvalues are always in increasing order. 

The sizes of the eigenvalues are interesting. If the size of the 

eigenvalues drops rapidly then the few PCA vectors will describe 

well the full system. See singular values below. They converge 

rather slowly.      

 

pca = PCA(n_components=25) # the data is the hand written numbers 

pca.fit(X_train) 

 

print(pca.explained_variance_ratio_) 

 

[0.24514349 0.10473111 0.08623073 0.06719103 0.06209128 0.05053699 

 0.03717109 0.03360051 0.02749044 0.02609572 0.02266894 0.0198537 

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA


 

 

 0.01721891 0.0148109  0.01366381 0.01252788 0.01156316 0.01039905 

 0.00913752 0.00840813 0.00818914 0.0078     0.00656221 0.00614921 

 0.0053825 ] 

 

print(pca.singular_values_) 

 

[94.13189933 61.52682241 55.8287204  49.2813141  47.37420691 42.73968525 

 36.65466562 34.84974354 31.52227198 30.71222483 28.62478536 26.78843579 

 24.94763991 23.13755106 22.22350714 21.27969841 20.44395048 19.38757168 

 18.17359032 17.43316833 17.20464816 16.79089366 15.40110313 14.90858311 

 13.94821021] 

 

One need to keep in mind that the descriptors matters also in the 

unsupervised learning. Before the DR the data is arranged 

according to the descriptors. After DR it is not easy to 

understand the axis. Mathematically they can be inverter.  

 

 

One of the most powerful DR method I have used is UMAP. It is not 

in sklearn but it can be loaded from net. It has very good web 

page: Using UMAP for Clustering — umap 0.5 documentation (umap-learn.readthedocs.io) 
 

One example project is a Claisen reaction study. In this we have 

fixed one of the reactants and varied the other (the alcohol) in 

the example there 1778 molecules with different R1,R2,R3’s.  

 
 
We do not have the reaction data at the moment but we try to use 

cluster analysis if we can get cluster these molecules somehow. We 

have mostly used the fingerprint as descriptors but also some DFT 

data like HOMO, LUMO, dipole moment, O charge and number of atoms has 

been used. We used 128 fingerprints. 

 

With Fingerprint + DFT data and PCA analysis the raw data is below. 

Here the data is plotted on the three lowest PCA vectors. The 

clustering trend is not strong.  

 

https://umap-learn.readthedocs.io/en/latest/clustering.html


 

 

 
Here is the 01-plane clustering with 5 clusters. This data do not 

show clear clustering.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The same data with UMAP analysis. This analysis is done on 3D (3 

lowest vectors)  



 

 

   
 
and the cluster analysis. Clearly the UMAP will cluster the data 

much better. (The 3D pictures are more informative on screen where 

you can rotate them.) 

 

 
The clustering is interesting but does it describe the chemistry. 

To prove that we need experimental data of the reaction 



 

 

rates/yields. On the other hand the clustering is useful since 

molecules form different clusters can be tested experimentally.  

 

 

Where we can get the data for ML projects  
 
In chemical and material science problems we have some large 

experimental databases (DB), like the crystal structure DB’s but for 

many properties we do not have large DB’s. Individual values can be 

found form the literature but if we need thousands of numbers large 

scale DFT computations are a promising approach. The experimental 

data form various sources can contain errors whereas if the DFT 

computations are done systematically the data is of good quality. Of 

course, the DFT is not perfect but for ML we need trends and large 

data sets. This is the reason why most chemistry and materials 

science ML project are based on DFT calculations.  

 
Because the DFT results are so useful (for ML) there are also BD’s 

for the DFT results, like NOMAD. A good review of the Databases is 

Himanen et al. Adv. Sci. 2019, 6, 1900808, DOI: 10.1002/advs.201900808  
 
NOMAD: Provides storage for full input and output files of all important computational materials 
science codes, with multiple big-data services built on top. Contains over 50 236 539 total energy 
calculations.  
 
Warning the databases are not always easy to use and the data quality 

can be quite poor. We did a M.Sc. study of chemical reactions using 

DFT DB’s and the results were not very good. We are in the beginning 

of the DFT DB’s and the rules what one need to store to the DB’s does 

not exist. It also seems that the data in the DB’s are not checked 

very carefully. I hope that the quality DB’s will improve in the 

future. Naturally this criticism does not apply to all databases. 

 

 

Data gathering  
 

The modern computers can do 1000’s of DFT computations rather 

quickly, of course depending on the complexity of the 

molecule/material. It is impractical to do 1000’s DFT computations by 

hand and the analysis of the results also takes time. These need to 

be automatize. There are some programs to do this, like FireWorks, 

Introduction to FireWorks (workflow software) — FireWorks 2.0.3 documentation 
(materialsproject.github.io)  but one can also write simple scripts to make the 
input files, work submission and data analysis.  

 

 

    

 

 

 

 

1000 input 

files 

submit jobs   

1000 coordinates (.xyz) 

model input file 

1000 output 

files 

collect data 

from output   

output for 

each 

molecule  

https://materialsproject.github.io/fireworks/
https://materialsproject.github.io/fireworks/


 

 

 

 

 

The above loop is quite easy when molecular descriptors, like dipole 

moment, HOMO, LUMO energy are gather but more challenging if atom and 

inter-atom type information (distances) is needed. The later is due 

to a simple fact that atom ordering is usually not well defined 

especially with different molecules. Same molecule with different 

atom order will look different for the ML.  

 

 
 

Data quality  
 
Remember: GARBAGE IN GARBAGE OUT  

 

Data quality is essential to ML. Wherever you get the data one should 

be skeptical of its quality. Are there some chemical bound the data 

should full fill? In large databases are there duplicated data.  
When the ML parity plot is done are there some outliers in the data. 

They can be due to the poor ML model OR form poor input  

data. When doing 1000’s of DFT calculations, are all the results 

converged? If using external DB’s how you know the data quality. 

 

If possible it is better to produce the data systematically, e.g. 

doing own DFT computations or experiments. In my opinion the absolute 

accuracy is not very important. The ML is based on trends and then 

the consistency of the data is more important.   

 

Predictability  
 
The predictability is one of the hardest questions in ML. We can 

easily analyse the predictability of the data set we have but what 

happen if we go outside the data set. If the new molecules (or 

materials) are similar we can expect reasonable predictions. But what 

is “similar”?  
 

The larger and more diverge the learning DB is the more we can 

predict. We can pick new rather different molecules and predict their 
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values. Some of these values can be tested with DFT (or experiments). 

This is the “publication set” idea.   
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