Density-Functional Theory for Practitioners - Lecture 3

Orlando Silveira Júnior, Adolfo Otero Fumega and Ondřej Krejčí, (Developed by Patrick Rinke and Milica Todorović)

Aalto University School of Science Department of Applied Physics

Revision

At your table, reflect on last week's lecture and tutorial:

- What did you learn about the equilibrium structure of molecules?
- What did you find difficult or easy in running the calculations?
- How did the calculations help you understand DFT better?

House keeping – geometry.in > initial_moment

Electron Configurations of Selected Elements								
Element	1s	2s	2p,	2p _y	2p _z	3s	Electron configuration	
н	1						1 <i>s</i> ¹	
He	↑ ↓						1 <i>s</i> ²	
Li	î↓	1					1 <i>s</i> ² 2 <i>s</i> ¹	
С	î↓	î↓	Î	î			1s ² 2s ² 2p ²	
N	î↓	↑ ↓	Î	î	1		1s ² 2s ² 2p ³	
0	î↓	î↓	î↓	t	t		1 <i>s</i> ²2 <i>s</i> ²2 <i>p</i> ⁴	
F	î↓	†↓	↑ ↓	î↓	Î		1 <i>s</i> ²2 <i>s</i> ²2 <i>p</i> ⁵	
Ne	î↓	↑↓	↑ ↓	î↓	î↓		1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶	
Na	î↓	ţ↓	î↓	↑ ↓	î↓	1	1s ² 2s ² 2p ⁶ 3s ¹	
	Copy	right © Pe	arson Edu	cation, In	c., or its af	filiates. All	Rights Reserved. PEARS	

House keeping – real-space density plotting

This lesson

Must know	Should know	Nice to know
Principles of bonding	Different bonding types	Bond formation
Periodic boundary conditions	Reciprocal space	Brillouin zone
Unit cell	Band structure	Distinction between metals, semiconductors, insulators

Learning outcomes

After completion of this class you

- are familiar with bonding and how it manifests in the charge density.
- know periodic boundary conditions and reciprocal space.
- can discriminate different solids.

Observations from Tutorial 2

- -8794.48 eV (charge +1) → -8803.34 eV
- -8794.74 eV (charge +1) \>
- -8803.90 eV (tier 3)

-8803.38 eV

- Total energies are large.
- Difference between conformers only ~0.1 eV.
- But, at room temperature: *k*_B*T*=0.025 eV
- Ionization energy ~10 eV.

Periodic systems

Periodic system

Can we build up this system from minimal components?

Periodic systems — lattice

Periodic systems — lattice

Lattice vectors are not unique.
Any linear combination works.

Periodic systems — unit cell

From molecules to solids again

Phase of atom-centered wavefunction (e.g. 1s for H ...)

Aalto University School of Science

1D periodicity — Hydrogen chain

What will the wave function of the periodic chain be like?

1D periodicity — Hydrogen chain

Aalto University School of Science

Bloch Theorem

periodic potential: (translational symmetry) $U(\mathbf{r} + \mathbf{R}) = U(\mathbf{r})$

R is one of our lattice vectors:

 $\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$

Bloch Theorem

periodic potential: (translational symmetry) $U(\mathbf{r} + \mathbf{R}) = U(\mathbf{r})$

R is one of our lattice vectors:

 $\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$

then also the wave function has to have a periodic part: Still 1 e $\psi(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}}u(\mathbf{r})$

wavefunction

$$u(\mathbf{r} + \mathbf{R}) = u(\mathbf{r})$$

Bloch Theorem and reciprocal space

R is one of our lattice vectors:

$$\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$$

$$\psi(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}}u(\mathbf{r})$$

1 e⁻ wavefunction

What is the *k*-vector? Which values can *k* take?

Flat potential — "1D metal"

$$U(r+a) = U(r) = \text{constant}$$

U(r)

Solution is a plane wave:

$$\phi(r) = e^{ikr} \qquad E(k) = \frac{k^2}{2}$$

Extended zone scheme

Summary

Each electron (or pair, if no spin is considered) gives one band.

$$h_{\mathrm{aux}}\psi_{n\mathbf{k}}(\mathbf{r}) = \epsilon_{n\mathbf{k}}\psi_{n\mathbf{k}}(\mathbf{r})$$

1 e⁻ Hamiltonian & wavefunction

The Fermi energy marks the energy of the highest occupied state.

 $-\pi/a$

E(k)

 π/a

The Fermi energy marks the energy of the highest occupied state.

Gallery Walk

1. Read the text for ~5 min

2. Discuss your topic with your group and together design a poster.

Your topic is printed on the cover page!

The topics are:

Types of Bonds
 Covalent Bonding
 Ionic Bonding
 Metallic Bonding
 Hydrogen and Dispersion Bonding
 Distortion of Bonds

Gallery Walk

1. Mix groups – so new groups has someone from each group – explain the poster you are standing at.

2. Move on to the next poster at the signal.

Interesting information

Energy converter: https://www.colby.edu/chemistry/PChem/Hartree.html

