
ELEC-E8421 Components of Power Electronics

Exercise 3.

1. Define cooling element thermal resistance for IXFH15N60-FET, when FETcurrent is as figure below. Cooling air is 45 C and $V_GS = 10$ V. Voltage over FET is 360 V during turn-on, and 500 V during turn-off.

2. Check, how stable the previously dimensioned thermal operation points is.(As in, check whether there is a danger of thermal runaway)

LIXYS

Symbol

V_{DSS}

V

V_{cs}

 V_{GSM}

 \mathbf{I}_{D25}

I_{DM}

I_{AR}

EAR

Р<u>р</u>

T,

 T_{JM}

T_{stg}

T_L

. M_d

Weight

Symbol

V_{DSS}

l_{ass}

I_{DSS}

 $\mathbf{R}_{\mathrm{DS(on)}}$

V_{GS(th)}

dv/dt

HiPerFET™ **Power MOSFETs**

IXFH/IXFM15N60 IXFH/IXFM20N60

$V_{\rm DSS}$	I _{D25}	$\mathbf{R}_{DS(on)}$
600 V	15 A	0.50 Ω
600 V	20 A	0.35 Ω

t*...* ≤ 250 ns

N-Channel Enhancement Mode High dv/dt, Low t_", HDMOS[™] Family

Test Conditions

Continuous

Transient $T_{c} = 25^{\circ}C$

 $T_c = 25^{\circ}C$

 $T_c = 25^{\circ}C$

 $T_c = 25^{\circ}C$

Mounting torque

Test Conditions

 $V_{OS} = 0 V, I_{D} = 250 \mu A$

 $V_{DS} = V_{QS}, I_{D} = 4 \text{ mA}$

 $V_{gs} = \pm 20 V_{DC}, V_{DS} = 0$

 $V_{GS} = 10 \text{ V}, I_{D} = 0.5 \bullet I_{D25}$

 $V_{\rm DS} = 0.8 \bullet V_{\rm DSS}$ $V_{\rm GS} = 0 V$

 $T_{\perp} = 25^{\circ}C$ to $150^{\circ}C$

 $T_{11} = 25^{\circ}C$ to $150^{\circ}C$; $R_{00} = 1 M\Omega$

 $T_c = 25^{\circ}C$, pulse width limited by T_{IM}

 $\begin{array}{ll} \mathsf{I}_{_{S}} & \leq \mathsf{I}_{_{DM}}, \, di/dt \leq 100 \, \, \text{A}/\mu \text{s}, \, \mathsf{V}_{_{DD}} \leq \mathsf{V}_{_{DSS}}, \\ \mathsf{T}_{_{J}} & \leq 150^{\circ}\text{C}, \, \mathsf{R}_{_{G}} = 2 \, \, \Omega \end{array}$

1.6 mm (0.062 in.) from case for 10 s

Maximum Ratings	

٧

٧

V

٧

A

А

A

А

A

А

mJ

V/ns

W

°C

°C

°C

°C

V

V

nΑ

μA

mΑ 1

Ω

Ω

600

600

±20

±30

15

20

60

80

15

20 30

5

300

150

300

Characteristic Values

max.

4.5

±100

250

0.50

0.35

1.13/10 Nm/lb.in.

-55 ... +150

-55 ... +150

TO-204 = 18 g, TO-247 = 6 g

typ.

(T₁ = 25°C, unless otherwise specified)

min.

600

2.0

T_ = 25°C

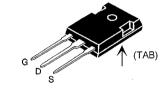
T_. = 125°C

15N60

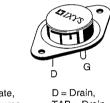
20N60

15N60

20N60


15N60

20N60


15N60

20N60

TO-247 AD (IXFH)

TO-204 AE (IXFM)

G = Gate, S = Source, TAB = Drain

Features

- International standard packages
- Low R_{DS (on)} HDMOS[™] process
 Rugged polysilicon gate cell structure
- Unclamped Inductive Switching (UIS)
- rated · Low package inductance
- easy to drive and to protect
- Fast intrinsic Rectifier

Applications

- DC-DC converters
- Synchronous rectification
- · Battery chargers
- · Switched-mode and resonant-mode power supplies
- · DC choppers
- · AC motor control
- Temperature and lighting controls
- · Low voltage relays

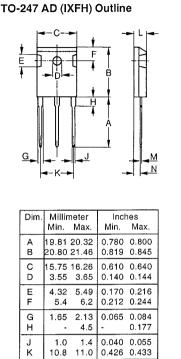
Advantages

- Easy to mount with 1 screw (TO-247)
- (isolated mounting screw hole) Space savings
- · High power density
- IXYS reserves the right to change limits, test conditions, and dimensions.

Pulse test, t \leq 300 μ s, duty cycle d \leq 2 %

© 2000 IXYS All rights reserved

91526E (4/99)


C1 - 214

LIXYS

IXFH 15N60 IXFH 20N60 IXFM 15N60 IXFM 20N60

Symbol	Test Conditions Ch $(T_J = 25^{\circ}C, \text{ unless } c)$ min.	aracte otherwi typ.		cified)
9 _{fs}	$V_{DS} = 10 \text{ V}; \text{ I}_{D} = 0.5 \cdot \text{ I}_{D25}, \text{ pulse test}$ 11	18		S
C _{iss}		4500		pF
C _{oss} C _{rss}	$\begin{cases} V_{GS} = 0 V, V_{DS} = 25 V, f = 1 MHz \end{cases}$	420 140		pF pF
d(on))	20	40	ns
t _r	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$	43	60	ns
d(off)	$R_{g} = 2 \Omega$ (External)	70	90	ns
f)	40	60	ns
D _{g(on)}		151	170	nC
Q _{gs}	$V_{GS} = 10 \text{ V}, \text{ V}_{DS} = 0.5 \cdot \text{ V}_{DSS}, \text{ I}_{D} = 0.5 \cdot \text{ I}_{D25}$	29	40	nC
^{وم}	J	60	85	nC
R _{thJC}			0.42	K/W
R _{thCK}		0.25		K/W

Source-Dra	in Diode	Cha (T , = 25°C, unless c		ristic Values
Symbol	Test Conditions	$(T_j = 25 \text{ C}, \text{ unless C})$ min.	typ.	max.
l _s	V _{es} = 0 V	15N60 20N60		15 A 20 A
I _{SM}	Repetitive; pulse width limited by $T_{_{JM}}$	15N60 20N60		60 A 80 A
V _{SD}	$I_F = I_S, V_{GS} = 0 V,$ Pulse test, t ≤ 300 µs, duty	cycle d ≤ 2 %		1.5 V
t _{rr}		T _J = 25°C T _J = 125°C		250 ns 400 ns
Q _{RM}	$\begin{cases} I_{F} = I_{S} \\ -di/dt = 100 \text{ A/}\mu\text{s}, \\ V_{B} = 100 \text{ V} \end{cases}$	T _J = 25°C T _J = 125°C	1 2	μC μC
I _{RM}		T _J = 25°C T _J = 125°C	10 15	A A

5.3 0.185 0.209 0.8 0.016 0.031

1.5 2.49 0.087 0.102

L M

Ν

4.7 0.4

204 4	AE (IX	FM) O	utline	
⊧ ₹				T+K-
<u>•</u> Н	6	2		R
Ŧ	-0-	Y		
Dim.		imeter Max		hes Max
A	Mill Min. 38.61	imeter Max. 39.12 22.22	Inc Min. 1.520	hes Max. 1.540 0.875
A	Min.	Max. 39.12	Min.	Max. 1.540
A B C D E F	Min. 38.61 - 6.40	Max. 39.12 22.22 11.40	Min. 1.520 0.252	Max. 1.540 0.875 0.449
	Min. 38.61 - 6.40 1.45 1.52	Max. 39.12 22.22 11.40 1.60 3.43	Min. 1.520 0.252 0.057 0.060	Max. 1.540 0.875 0.449 0.063 0.135 BSC 0.440
A B C D E F G	Min. 38.61 - 6.40 1.45 1.52 30.15 10.67	Max. 39.12 22.22 11.40 1.60 3.43 BSC 11.17	Min. 1.520 0.252 0.057 0.060 1.187 0.420	Max. 1.540 0.875 0.449 0.063 0.135 BSC 0.440

© 2000 IXYS All rights reserved

 IXYS MOSFETS and IGBTs are covered by one or more of the following U.S. patents:

 4,835,592
 4,881,106
 5,017,508
 5,049,961
 5,187,117
 5,486,715

 4,850,072
 4,931,844
 5,034,796
 5,063,307
 5,237,481
 5,381,025

C1 - 215

LIXYS

IXFH 15N60 IXFH 20N60 IXFM 15N60 IXFM 20N60

Fig. 1 Output Characteristics

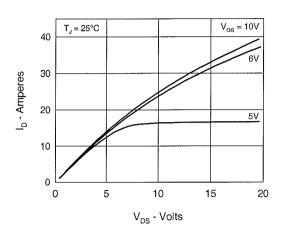


Fig. 3 R_{DS(on)} vs. Drain Current

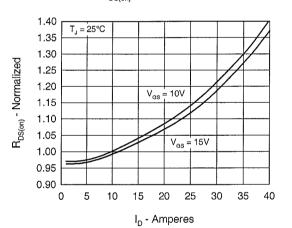
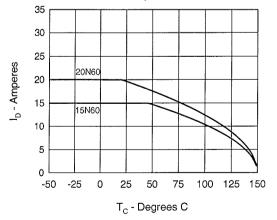



Fig. 5 Drain Current vs. Case Temperature

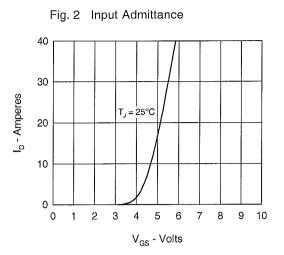
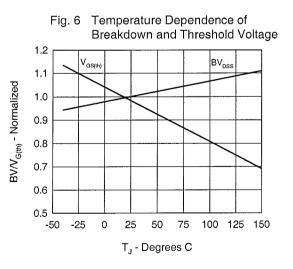
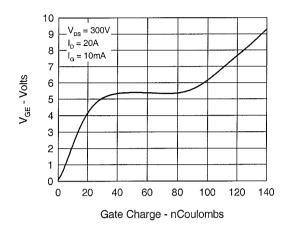
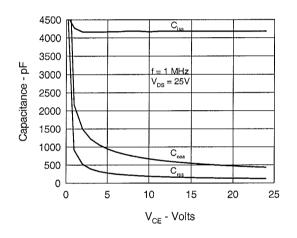
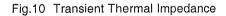



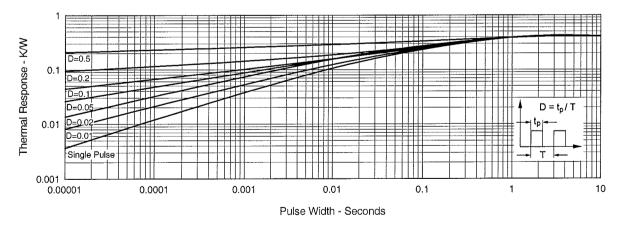
Fig. 4 Temperature Dependence of Drain to Source Resistance



© 2000 IXYS All rights reserved


IXFH 15N60 IXFH 20N60 IXFM 15N60 IXFM 20N60


Fig.7 Gate Charge Characteristic Curve


LIXYS

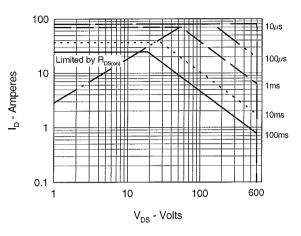


Fig.9 Capacitance Curves

