Exercise 4-Solution

1- At first, we have to figure out the amount of losses for each one of the switches. Calculate IGBT Energy per pulse Figure 3 upholds when $\mathrm{V}_{\mathrm{ge}}= \pm 15$ and $\mathrm{R}_{\mathrm{g}}=$ 3.8Ω, However, voltage is 560 V not 600 V . Using linear scaling for pulse energy Eon $=14 \mathrm{~mJ} * 560 \mathrm{~V} / 600 \mathrm{~V}=13 \mathrm{~mJ}$
$E_{\text {off }}=21 \mathrm{~mJ}$ * $560 \mathrm{~V} / 600 \mathrm{~V}=20 \mathrm{~mJ}$

Fig. 3: Typ. turn-on /-off energy $=f(\mathrm{lc})$
Conduction losses can be calculated using figure 1 voltage. Uce $=2.0 \mathrm{~V}$, when $\mathrm{Ic}=$ $150 \mathrm{~V}, \mathrm{Vge}=15$ and $\mathrm{Tj}=150 \mathrm{C}$.
or using numerical values in the datasheet
$\mathrm{Uce}=\mathrm{U}_{\mathrm{ce} 0}+\mathrm{r}_{\mathrm{ce}}{ }^{*} \mathrm{I}_{\mathrm{c}}=0.98 \mathrm{~V}+7 \mathrm{~m} \Omega$ * $150 \mathrm{~A}=2.03 \mathrm{~V}$
Therefore, Econd $=U_{c e}{ }^{*} I_{c}{ }^{*}$ ton $=2.0 \mathrm{~V}$ * $150 \mathrm{~V} * 0.6 \mathrm{~ms}=180 \mathrm{~mJ}$
Switching time < 1 us while conduction time is 0.6 ms , therefore we may disregard conducting operation during dead time. IGBT loss power is:
$P_{\text {IGBT }}=f$ * $\left(E_{\text {on }}+E_{\text {off }}+E_{\text {cond }}\right)=1000 \mathrm{~Hz}$ * $(13 \mathrm{~mJ}+20 \mathrm{~mJ}+180 \mathrm{~mJ})=213 \mathrm{~W}$

Diode Losses

Also diode reverse recovery causes switching losses, which are also depicted in figure 3. Again lets use linear voltage scaling $\mathrm{E}_{\mathrm{rr}}=13 \mathrm{~mJ}$ * $560 \mathrm{~V} / 600 \mathrm{~V}=12 \mathrm{~mJ}$.

Voltage for $150 \mathrm{~A} \mathrm{I}_{\mathrm{rr}}$ is given in figure $10 . \mathrm{U}_{\mathrm{F}}=1.9 \mathrm{~V}$, when $\mathrm{Tj}=150 \mathrm{C}$.
Or numerical values, $U_{F}=U_{F 0}+r_{F}{ }^{*} I_{f}=1.1 \mathrm{~V}+5.9 \mathrm{~m} \Omega$ * $150 \mathrm{~A}=1.99 \mathrm{~V}$

Therefore conduction energy is $E_{\text {cond_D }}=1.9 \mathrm{~V}$ * $150 \mathrm{~A} * 0.4 \mathrm{~ms}=114 \mathrm{~mJ}$ and average losses $P H D=f *\left(E_{r r}+E_{\text {cond_D }}\right)=1000 \mathrm{~Hz}$ * $(12 \mathrm{~mJ}+114 \mathrm{~mJ})=126 \mathrm{~W}$ Module thermal equivalent circuit when frequency is 1 kHz , as in. The thermal circuit is constant during switching action.

Maximum thermal resistances for the junction to case and case to sink are given:
$R_{\text {th_I }}$ GBt $=0.14 \mathrm{k} / \mathrm{w} \quad R_{t h} \mathrm{D}=0.23 \mathrm{k} / \mathrm{w} \quad R_{\text {th_cs }}=0.04 \mathrm{k} / \mathrm{w}$
Therefore:
Tc=(Ph_ıGBT2+PH_D1)x(Rth_cs+ $\left.\mathrm{R}_{\text {th_sA }}\right)+\mathrm{T}_{\mathrm{A}}=(213+126) \times(0.04+0.08)+45^{\circ} \mathrm{C}=86^{\circ} \mathrm{C}$
TJ_IGBT2 $=$ Ph_IGBT2 $\mathrm{RR}_{\text {th_IGBT2 }}+\mathrm{T}_{\mathrm{C}}=213 \times 0.14+86^{\circ} \mathrm{C}=116^{\circ} \mathrm{C}$
TJ_D1 $=\mathrm{P}_{\mathrm{H}}$ D1 $1 \times R_{\text {th_D }}+\mathrm{T}_{\mathrm{C}}=126 \times 0.23+86^{\circ} \mathrm{C}=115^{\circ} \mathrm{C}$

2- According to the given datasheet, we are not able to find the absolute values of $I_{r r}$ and $t_{r r}$ at the given operating point and we need more detailed data. Nevertheless, we can define a boundary for them by considering the maximum values.

Figure 11 gives the I_{rr} of around 210 A , when Gate resistor is $3,8 \Omega$.

Fig. 11: Typ. CAL diode peak reverse recovery current
Figure 12 gives $3,8 \Omega \mathrm{Rg}_{\mathrm{g}}$ and 150 A Ic , di/dt value of around $3300 \mathrm{~A} / \mathrm{us}$

Fig. 12: Typ. CAL diode recovery charge
Reverse recovery equation is $Q_{r r}=I_{r r}{ }^{*} t_{r r} / 2$
then $\mathrm{trr}^{2}=2 * 32 \mathrm{uc} / 210 \mathrm{~A}=0.3 \mathrm{us}$

