Mathematics for Economists

Mitri Kitti

Multivariate functions

Functions

- A function $f: A \longrightarrow B$ from a set A to a set B is a rule that assigns to each element $a \in A$ one and only one element $b \in B$
- A is the domain of f
- B is the codomain of f
- The image (or range) of A under f is the set

$$
f[A]:=\{b \in B: b=f(a) \text { for some } a \in A\}
$$

- In this course (and in much of Economics), $A \subseteq \mathbb{R}^{n}$ and $B=\mathbb{R}^{m}$
- note if $m>1$, then $f(\mathbf{x})=\left(f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right)$, where $f_{i}, i=1, \ldots, m$, are the component functions of f

Functions

1. What is the function corresponding to the set $\{(1,2),(2,2),(3,2)\}$ in $X \times Y$? What is the domain, codomain and range of the function?
2. Assume $X=\{-1,1,2,3\}$ and $Y=\mathbb{R}$

In which of the cases we have a function from X to Y ?
a) $f(1)=2, f(2)=2, f(3)=2$
b) $f(-1)=0, f(1)=0, f(2)=\{1,2\}, f(3)=1$
c) $f(x)=\sqrt{x}$

Functions of Several Variables: Examples

- Examples of utility/production functions $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$
- Linear (perfect substitutes):

$$
f\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

- Leontief (perfect complements):

$$
f\left(x_{1}, \ldots, x_{n}\right)=\min \left\{a_{1} x_{1}, a_{2} x_{2}, \ldots, a_{n} x_{n}\right\}
$$

- Cobb-Douglas:

$$
f\left(x_{1}, \ldots, x_{n}\right)=C \prod_{i=1}^{n} x_{i}^{a_{i}}
$$

- Constant Elasticity of Substitution (CES):

$$
f\left(x_{1}, \ldots, x_{n}\right)=C\left(\sum_{i=1}^{n} a_{i} x_{i}^{\rho}\right)^{\frac{1}{\rho}}, \quad \text { with } \rho \neq 0, \rho<1
$$

Functions of Several Variables: Graph

- The graph of a function $f: A \longrightarrow B$ is the set:

$$
\{(x, f(x)): x \in A\} .
$$

The graph of $f(x, y)=x^{2}+y^{2}$.

Functions of Several Variables: Level Curves

- It is often easier to represent functions defined over $A \subseteq \mathbb{R}^{2}$ with level curves (or sets)
- For a fixed value \bar{b}, the level curve of f is the set:

$$
\{x \in A: f(x)=\bar{b}\}
$$

Level curves of $z=x^{2}+y^{2}$.

Topographic Maps as Level Curves

Functions of Several Variables: Indifference Curves

- In Economics, level curves of utility and production functions are called indifference curves and isoquants, respectively

Figure: Three distinct isoquants of a production function $q=f(K, L)$

Injections, Surjections, and Bijections

- A function $f: A \longrightarrow B$ is one-to-one or injective if, for every $x, y \in A$,

$$
x \neq y \Longrightarrow f(x) \neq f(y)
$$

- Example: $f: \mathbb{R}_{+} \longrightarrow \mathbb{R}$ such that $f(x)=x^{2}$
- A function $f: A \longrightarrow B$ is onto or surjective if, for every $y \in B$, there exists an element $x \in A$ such that $f(x)=y$.
- Example: $f: \mathbb{R} \longrightarrow \mathbb{R}_{+}$such that $f(x)=x^{2}$
- A function $f: A \longrightarrow B$ is bijective if it is both injective and surjective.
- Example: $f: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$such that $f(x)=x^{2}$

Injections, Surjections, and Bijections

Injections, Surjections, and Bijections

- Which of the following are injections bijections or surjections (and how to define domain in each case)?
- $f(x)=e^{x}$
- $f(x)=\ln (x)$
- $f(x, y)=x y$
- $f(x, y)=\min \{x, y\}$
- $f(x, y)=(x, x)$
- $f\left(x_{1}, \ldots, x_{n}\right)=0$

Composite Functions

- Given two functions $f: A \longrightarrow B$ and $g: C \longrightarrow D$, with $B \subseteq C$, the composition of f with g is the function $g \circ f: A \longrightarrow D$ such that

$$
(g \circ f)(x)=g(f(x)) \text { for all } x \in A
$$

- Example:
- $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ such that $f(x, y)=x+y$
- $g: \mathbb{R} \longrightarrow \mathbb{R}$ such that $g(x)=x^{2}$
$-g \circ f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ is such that $(g \circ f)(x, y)=(x+y)^{2}$

The composition of f with g.

Inverse Function

- For a bijective function $f: A \longrightarrow B$, we can define the inverse of f as the function $f^{-1}: B \longrightarrow A$ such that

$$
f(x)=y \Longleftrightarrow f^{-1}(y)=x
$$

- Example:
- Take the linear demand function $Q:[0, a / b] \longrightarrow[0, a]$ such that $Q(p)=a-b p$, with $a>b>0$
- The so-called inverse demand function $P(q):[0, a] \longrightarrow[0, a / b]$ such that $P(q)=\frac{1}{b}(a-q)$ is the inverse function of Q

Linear Functions

- Assume that A is an $m \times n$ matrix
- Function $f(\mathbf{x})=A \mathbf{x}$ is a linear function, $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$
- Assume that $m=n$, and A is invertible

The inverse function of f is $f^{-1}(\mathbf{y})=A^{-1} \mathbf{y}$

- Assume that B is an $k \times m$ matrix and $g(\mathbf{y})=B \mathbf{y}$

Composition of f with g is $(g \circ f)(\mathbf{x})=B A \mathbf{x}$

Linear Functions: Example

- Assume two firms with quantities produced denoted by q_{1} and q_{2}
- Reaction functions:
- if firm 1 produces q_{1} the other responds by producing $R_{2}\left(q_{1}\right)=6-q_{1} / 2$
- if firm 2 produces q_{2} the other responds by producing $R_{1}\left(q_{2}\right)=6-q_{2} / 2$
- The reactions of firms are characterized by $R: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ such that $R\left(q_{1}, q_{2}\right)=\left(R_{1}\left(q_{1}\right), R_{2}\left(q_{2}\right)\right)$

Sequences

- A sequence in \mathbb{R} is a function $s: \mathbb{N} \longrightarrow \mathbb{R}$
- Examples:
- $s(n)=\frac{1}{n}$, i.e. $\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}$
- $s(n)=5$, i.e. $\{5,5,5,5, \ldots\}$
- $s(n)=\frac{1}{n^{2}}$, i.e. $\left\{1, \frac{1}{4}, \frac{1}{9}, \ldots\right\}$
- $s(n)=(-1)^{n}$, i.e. $\{-1,1,-1,1, \ldots\}$
- Oftentimes we write a generic sequence as $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ or $\left\{x_{n}\right\}_{n=1}^{\infty}$
- A sequence in \mathbb{R}^{n} is a function $s: \mathbb{N} \longrightarrow \mathbb{R}^{n}$. That is, a sequence is an assignment of a vector in \mathbb{R}^{n} to each natural number

Sequences and Limits

- Given a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in \mathbb{R} and a real number L, we say that this sequence converges to L if, for every arbitrarily small real number $\epsilon>0$, there exists a positive integer N such that $\left|x_{n}-L\right|<\epsilon$ for all $n \geq N$.
- When $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to L, we say that L is the limit of this sequence, and we write $\lim _{n \longrightarrow \infty} x_{n}=L$ or simply $x_{n} \longrightarrow L$.

Sequences and Limits

- Example: $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$
- How to check that 0 is indeed the limit of this sequence?

1. Fix a small number $\epsilon>0$
2. Choose any positive integer N such that $N>\frac{1}{\sqrt{\epsilon}}$
3. For any $n \geq N$, we have

$$
\left|x_{n}-L\right|=\left|\frac{1}{n^{2}}-0\right| \leq\left|\frac{1}{N^{2}}-0\right|<\left|\frac{1}{(1 / \sqrt{\epsilon})^{2}}-0\right|=\epsilon
$$

Sequences and Limits

- If a sequence converges, its limit is unique
- Not every sequence has a limit. Examples:
- $\{1,-1,1,-1,1,-1, \ldots\}$
- $\left\{1^{2}, 2^{2}, 3^{2}, 4^{2}, \ldots\right\}$
- If $a_{n} \longrightarrow a$ and $b_{n} \longrightarrow b$, then $\left(a_{n}+b_{n}\right) \longrightarrow a+b$
- If $a_{n} \longrightarrow a$ and $b_{n} \longrightarrow b$, then $a_{n} b_{n} \longrightarrow a b$
- If $a_{n} \longrightarrow a$ and $b_{n} \longrightarrow b$, then $\frac{a_{n}}{b_{n}} \longrightarrow \frac{a}{b}$ if neither b nor any b_{n} is equal to zero

Sequences and Limits

- Given a sequence of vectors in \mathbb{R}^{n}, we have that this sequence converges if and only if all n sequences of its components converge in \mathbb{R}
- Alternatively, a sequence converges to \mathbf{x}^{*} if, for every arbitrarily small real number $\epsilon>0$, there exists a positive integer N such that $\left\|\mathbf{x}_{n}-\mathbf{x}^{*}\right\|<\epsilon$ for all $n \geq N$.
- For example, the sequence of vectors $\left\{\left(1+\frac{1}{n}, \frac{1}{2 n}\right)\right\}_{n=1}^{\infty}$ converges to the vector $(1,0)$

Continuous Functions

- Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a function and let $x_{0} \in \mathbb{R}^{n}$ be a point in its domain. We say that f is continuous at x_{0} if whenever $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence in \mathbb{R}^{n} that converges to x_{0}, then the sequence $\left\{f\left(x_{n}\right)\right\}_{n=1}^{\infty}$ in \mathbb{R} converges to $f\left(x_{0}\right)$.
- If a function is continuous at every point in its domain, then we say that the function is continuous
- Examples of continuous functions are all the utility/production functions at p. 4

Continuous Functions

- An alternative (and equivalent) definition of continuity (so-called epsilon-delta definition) is the following
- A function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous at x_{0} if, for every $\epsilon>0$, there exists a $\delta>0$ such that for all $x \in \mathbb{R}$ we have

$$
\left|x-x_{0}\right|<\delta \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon
$$

Discontinuity

- An example of a discontinuous function is $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$
f(x)= \begin{cases}1 & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

- To see why this function is discontinuous at $x=0$, take the sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ in \mathbb{R}. This sequence converges to zero, but the sequence $\left\{f\left(\frac{1}{n}\right)\right\}_{n=1}^{\infty}$ converges to 1

Discontinuity

- Another example: $f(x, y)=1 /(x y)$, for $x, y \neq 0$, otherwise $f(x, 1)=1$

Composites of Continuous Functions

- Let f and g be functions from \mathbb{R}^{n} to \mathbb{R}. Suppose that both f and g are continuous at $x \in \mathbb{R}^{n}$. Then we have that all the following functions are continuous at x too:
- $f+g$
- $f-g$
- $f \times g$
- Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a continuous function at $x_{0} \in \mathbb{R}^{n}$, and let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function at $f\left(x_{0}\right) \in \mathbb{R}$. Then the composite function $g \circ f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is continuous at x_{0}.

Derivatives and Partial Derivatives

- For a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ of one variable, the derivative of f at x_{0} is

$$
\frac{d f}{d x}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

provided that the limit exists.

- Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$. The partial derivative of f with respect to x_{i} at $x=\left(x_{1}, \ldots, x_{n}\right)$ is

$$
\frac{\partial f}{\partial x_{i}}(x)=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{i}+h, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)}{h}
$$

provided that the limit exists.

- NOTE: only x_{i} changes, all the other variables are treated as constants.
- Intuitively, the partial derivative of f w.r.t. x_{i} tells you how much the function changes as x_{i} changes.

Derivatives and Partial Derivatives

Rules of Differentiation

- Linearity: $h(x)=a f(x)+b g(x)$, then $h^{\prime}(x)=a f^{\prime}(x)+b g^{\prime}(x)$
- Product rule: $h(x)=f(x) g(x)$, then $h^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
- The chain rule: $h(x)=f(g(x))$, then $h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$
- Some elementary derivatives
- $f(x)=x^{r}, r \neq 0, f^{\prime}(x)=r x^{r-1}$
- $f(x)=e^{r x}, f^{\prime}(x)=r e^{r x}$
- $f(x)=\ln (x), f^{\prime}(x)=1 / x$

Derivatives and Partial Derivatives: Examples

- For a production function f, the partial derivative of f w.r.t. x_{i} is the marginal product of input x_{i}
- For a utility function u, the partial derivative of u w.r.t. x_{i} is the marginal utility of commodity x_{i}
- Example: Let $f: \mathbb{R}_{+}^{2} \longrightarrow \mathbb{R}$ be the Cobb-Douglas production function

$$
f(k, \ell)=C k^{\alpha} \ell^{\beta}
$$

where k is capital and ℓ is labor.

- The marginal products of capital and labor are

$$
\begin{aligned}
& \frac{\partial f}{\partial k}(k, \ell)=C \alpha k^{\alpha-1} \ell^{\beta} \\
& \frac{\partial f}{\partial \ell}(k, \ell)=C \beta k^{\alpha} \ell^{\beta-1}
\end{aligned}
$$

Example: Marginal Utility

- Example: Let $u: \mathbb{R}_{+}^{T} \longrightarrow \mathbb{R}$ be the CRRA (Constant Relative Risk Aversion) utility function

$$
u\left(c_{1}, \ldots, c_{T}\right)=\sum_{t=1}^{T} \beta^{t} \frac{c_{t}^{1-\gamma}}{1-\gamma}
$$

where $\beta \in(0,1)$ and $\gamma \geq 0, \gamma \neq 1$.

- The marginal utility of c_{t} (consumption in period t) is

$$
\frac{\partial u}{\partial c_{t}}=\beta^{t} c_{t}^{-\gamma}
$$

