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Functions

▶ A function f : A −→ B from a set A to a set B is a rule that assigns to each
element a ∈ A one and only one element b ∈ B

▶ A is the domain of f

▶ B is the codomain of f

▶ The image (or range) of A under f is the set

f [A] := {b ∈ B : b = f (a) for some a ∈ A}

▶ In this course (and in much of Economics), A ⊆ Rn and B = Rm

▶ note if m > 1, then f (x) = (f1(x), f2(x), . . . , fm(x)), where fi ,i = 1, . . . ,m, are the
component functions of f
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Functions

1. What is the function corresponding to the set {(1, 2), (2, 2), (3, 2)} in X × Y ?
What is the domain, codomain and range of the function?

2. Assume X = {−1, 1, 2, 3} and Y = R
In which of the cases we have a function from X to Y ?

a) f (1) = 2, f (2) = 2, f (3) = 2

b) f (−1) = 0, f (1) = 0, f (2) = {1, 2}, f (3) = 1

c) f (x) =
√
x
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Functions of Several Variables: Examples
▶ Examples of utility/production functions f : Rn −→ R

▶ Linear (perfect substitutes):

f (x1, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn

▶ Leontief (perfect complements):

f (x1, . . . , xn) = min {a1x1, a2x2, . . . , anxn}

▶ Cobb-Douglas:

f (x1, . . . , xn) = C
n∏

i=1

xaii

▶ Constant Elasticity of Substitution (CES):

f (x1, . . . , xn) = C

(
n∑

i=1

aix
ρ
i

) 1
ρ

, with ρ ̸= 0, ρ < 1
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Functions of Several Variables: Graph
▶ The graph of a function f : A −→ B is the set:

{(x , f (x)) : x ∈ A} .
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Functions of Several Variables: Level Curves
▶ It is often easier to represent functions defined over A ⊆ R2 with level curves (or

sets)
▶ For a fixed value b̄, the level curve of f is the set:{

x ∈ A : f (x) = b̄
}
.
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Topographic Maps as Level Curves

Map of Hawaii
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Functions of Several Variables: Indifference Curves
▶ In Economics, level curves of utility and production functions are called

indifference curves and isoquants, respectively

Figure: Three distinct isoquants of a production function q = f (K , L)
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Injections, Surjections, and Bijections

▶ A function f : A −→ B is one-to-one or injective if, for every x , y ∈ A,

x ̸= y =⇒ f (x) ̸= f (y).

▶ Example: f : R+ −→ R such that f (x) = x2

▶ A function f : A −→ B is onto or surjective if, for every y ∈ B, there exists an
element x ∈ A such that f (x) = y .
▶ Example: f : R −→ R+ such that f (x) = x2

▶ A function f : A −→ B is bijective if it is both injective and surjective.
▶ Example: f : R+ −→ R+ such that f (x) = x2
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Injections, Surjections, and Bijections
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Injections, Surjections, and Bijections

▶ Which of the following are injections bijections or surjections (and how to define
domain in each case)?

▶ f (x) = ex

▶ f (x) = ln(x)

▶ f (x , y) = xy

▶ f (x , y) = min{x , y}
▶ f (x , y) = (x , x)

▶ f (x1, . . . , xn) = 0

11 / 30



Composite Functions
▶ Given two functions f : A −→ B and g : C −→ D, with B ⊆ C , the composition

of f with g is the function g ◦ f : A −→ D such that

(g ◦ f )(x) = g(f (x)) for all x ∈ A.

▶ Example:
▶ f : R2 −→ R such that f (x , y) = x + y
▶ g : R −→ R such that g(x) = x2

▶ g ◦ f : R2 −→ R is such that (g ◦ f )(x , y) = (x + y)2
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Inverse Function

▶ For a bijective function f : A −→ B, we can define the inverse of f as the
function f −1 : B −→ A such that

f (x) = y ⇐⇒ f −1(y) = x .

▶ Example:

▶ Take the linear demand function Q : [0, a/b] −→ [0, a] such that Q(p) = a− bp,
with a > b > 0

▶ The so-called inverse demand function P(q) : [0, a] −→ [0, a/b] such that
P(q) = 1

b (a− q) is the inverse function of Q
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Linear Functions

▶ Assume that A is an m × n matrix

▶ Function f (x) = Ax is a linear function, f : Rn 7→ Rm

▶ Assume that m = n, and A is invertible

The inverse function of f is f −1(y) = A−1y

▶ Assume that B is an k ×m matrix and g(y) = By

Composition of f with g is (g ◦ f )(x) = BAx
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Linear Functions: Example

▶ Assume two firms with quantities produced denoted by q1 and q2
▶ Reaction functions:

▶ if firm 1 produces q1 the other responds by producing R2(q1) = 6− q1/2
▶ if firm 2 produces q2 the other responds by producing R1(q2) = 6− q2/2

▶ The reactions of firms are characterized by R : R2 7→ R2 such that
R(q1, q2) = (R1(q1),R2(q2))
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Sequences

▶ A sequence in R is a function s : N −→ R

▶ Examples:
▶ s(n) = 1

n , i.e.
{
1, 1

2 ,
1
3 , . . .

}
▶ s(n) = 5, i.e. {5, 5, 5, 5, . . . }

▶ s(n) = 1
n2 , i.e.

{
1, 1

4 ,
1
9 , . . .

}
▶ s(n) = (−1)n, i.e. {−1, 1,−1, 1, . . . }

▶ Oftentimes we write a generic sequence as {x1, x2, x3, . . . } or {xn}∞n=1

▶ A sequence in Rn is a function s : N −→ Rn. That is, a sequence is an assignment
of a vector in Rn to each natural number
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Sequences and Limits

▶ Given a sequence {xn}∞n=1 in R and a real number L, we say that this sequence
converges to L if, for every arbitrarily small real number ϵ > 0, there exists a
positive integer N such that |xn − L| < ϵ for all n ≥ N.

▶ When {xn}∞n=1 converges to L, we say that L is the limit of this sequence, and we
write limn−→∞ xn = L or simply xn −→ L.
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Sequences and Limits

▶ Example: limn−→∞
1
n2

= 0

▶ How to check that 0 is indeed the limit of this sequence?

1. Fix a small number ϵ > 0

2. Choose any positive integer N such that N > 1√
ϵ

3. For any n ≥ N, we have∣∣xn − L
∣∣ = ∣∣ 1

n2
− 0
∣∣ ≤ ∣∣ 1

N2
− 0
∣∣ < ∣∣ 1

(1/
√
ϵ)2

− 0
∣∣ = ϵ.
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Sequences and Limits

▶ If a sequence converges, its limit is unique

▶ Not every sequence has a limit. Examples:
▶ {1,−1, 1,−1, 1,−1, . . . }
▶
{
12, 22, 32, 42, . . .

}
▶ If an −→ a and bn −→ b, then (an + bn) −→ a+ b

▶ If an −→ a and bn −→ b, then anbn −→ ab

▶ If an −→ a and bn −→ b, then an
bn

−→ a
b if neither b nor any bn is equal to zero
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Sequences and Limits

▶ Given a sequence of vectors in Rn, we have that this sequence converges if and
only if all n sequences of its components converge in R

▶ Alternatively, a sequence converges to x∗ if, for every arbitrarily small real number
ϵ > 0, there exists a positive integer N such that ∥xn − x∗∥ < ϵ for all n ≥ N.

▶ For example, the sequence of vectors
{
(1 + 1

n ,
1
2n )
}∞
n=1

converges to the vector
(1, 0)

20 / 30



Continuous Functions

▶ Let f : Rn −→ R be a function and let x0 ∈ Rn be a point in its domain. We say
that f is continuous at x0 if whenever {xn}∞n=1 is a sequence in Rn that
converges to x0, then the sequence {f (xn)}∞n=1 in R converges to f (x0).

▶ If a function is continuous at every point in its domain, then we say that the
function is continuous

▶ Examples of continuous functions are all the utility/production functions at p. 4
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Continuous Functions

▶ An alternative (and equivalent) definition of continuity (so-called epsilon-delta
definition) is the following

▶ A function f : R −→ R is continuous at x0 if, for every ϵ > 0, there exists a δ > 0
such that for all x ∈ R we have

|x − x0| < δ =⇒ |f (x)− f (x0)| < ϵ.
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Discontinuity

▶ An example of a discontinuous function is f : R −→ R such that

f (x) =

{
1 if x > 0

0 if x ≤ 0

▶ To see why this function is discontinuous at x = 0, take the sequence { 1
n}

∞
n=1 in

R. This sequence converges to zero, but the sequence {f ( 1n )}
∞
n=1 converges to 1
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Discontinuity
▶ Another example: f (x , y) = 1/(xy), for x , y ̸= 0, otherwise f (x , 1) = 1
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Composites of Continuous Functions

▶ Let f and g be functions from Rn to R. Suppose that both f and g are
continuous at x ∈ Rn. Then we have that all the following functions are
continuous at x too:
▶ f + g
▶ f − g
▶ f × g

▶ Let f : Rn −→ R be a continuous function at x0 ∈ Rn, and let g : R −→ R be a
continuous function at f (x0) ∈ R. Then the composite function g ◦ f : Rn −→ R
is continuous at x0.
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Derivatives and Partial Derivatives
▶ For a function f : R −→ R of one variable, the derivative of f at x0 is

df

dx
(x0) = lim

h→0

f (x0 + h)− f (x0)

h
,

provided that the limit exists.

▶ Let f : Rn −→ R. The partial derivative of f with respect to xi at
x = (x1, . . . , xn) is

∂f

∂xi
(x) = lim

h→0

f (x1, ..., xi + h, ..., xn)− f (x1, . . . , xi , . . . , xn)

h
,

provided that the limit exists.

▶ NOTE: only xi changes, all the other variables are treated as constants.

▶ Intuitively, the partial derivative of f w.r.t. xi tells you how much the function
changes as xi changes.
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Derivatives and Partial Derivatives

x0
y0x

y

z
slope in x direction

∂f (x0, y0)/∂x

(x0, y0)

x0
y0x

y

z
slope in y direction

∂f (x0, y0)/∂y

(x0, y0)
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Rules of Differentiation

▶ Linearity: h(x) = af (x) + bg(x), then h′(x) = af ′(x) + bg ′(x)

▶ Product rule: h(x) = f (x)g(x), then h′(x) = f ′(x)g(x) + f (x)g ′(x)

▶ The chain rule: h(x) = f (g(x)), then h′(x) = f ′(g(x))g ′(x)
▶ Some elementary derivatives

▶ f (x) = x r , r ̸= 0, f ′(x) = rx r−1

▶ f (x) = erx , f ′(x) = rerx

▶ f (x) = ln(x), f ′(x) = 1/x
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Derivatives and Partial Derivatives: Examples
▶ For a production function f , the partial derivative of f w.r.t. xi is the marginal

product of input xi
▶ For a utility function u, the partial derivative of u w.r.t. xi is the marginal utility

of commodity xi

▶ Example: Let f : R2
+ −→ R be the Cobb-Douglas production function

f (k , ℓ) = Ckαℓβ,

where k is capital and ℓ is labor.

▶ The marginal products of capital and labor are

∂f

∂k
(k , ℓ) =Cαkα−1ℓβ

∂f

∂ℓ
(k , ℓ) =Cβkαℓβ−1.
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Example: Marginal Utility

▶ Example: Let u : RT
+ −→ R be the CRRA (Constant Relative Risk Aversion)

utility function

u(c1, ..., cT ) =
T∑
t=1

βt c
1−γ
t

1− γ
,

where β ∈ (0, 1) and γ ≥ 0, γ ̸= 1.

▶ The marginal utility of ct (consumption in period t) is

∂u

∂ct
= βtc−γ

t .
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