
ELEC-E8107 Stochastics models, estimation and 

control

Lecture 2b: Linear Estimation in Static Systems

• Minimum Mean Square Error (MMSE)

• MMSE estimation of Gaussian random vectors

• Linear MMSE estimator for arbitrarily distributed 
random vectors

• LS estimation of unknown constant vectors from linear 
observations, batch form, recursive form.

• Apply the LS technique
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ESTIMATION OF GAUSSIAN RANDOM 

VECTORS

The Conditional Mean and Covariance for Gaussian 

Random Vectors

Two random vectors x and z that are jointly normally (Gaussian) 

distributed

The estimate of the random variable x in terms of

z according to the minimum mean square error (MMSE) criterion —

the MMSE estimator — is the conditional mean of x given z.
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Joint and Conditional Gaussian random variables,

Conditional pdf of x given z.

New with zero mean random variables, the exponent 

becomes
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continues

completion of the squares

Fundamental equations of linear estimation
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Estimation of Gaussian random vectors

x and z jointly Gaussian z is the measurement x random variable to be 

estimated

The MMSE Minimum Mean Square Error –estimator is the  
conditional mean of x given z, for linear Gaussian case, 

also Maximum a Posteriori MAP -estimator



• The optimal estimator (in the MMSE sense) of x in terms of z is a 

linear function of z. This is a consequence of the Gaussian 

assumption

• conditional covariance, measures the “quality” of the estimate, is 

independent of the observation z.

The MMSE estimate — the conditional mean — of a Gaussian random 

vector in terms of another Gaussian random vector (the measurement) 

is a linear combination of 

• The prior (unconditional) mean of the variable to be estimated;

• The difference between the measurement and its prior mean.
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LINEAR MINIMUM MEAN SQUARE ERROR ESTIMATION

The Principle of Orthogonality

(MMSE) estimate of a random variable x in terms of another random 

variable z is the conditional mean E[x|z]

• In many problems the distributional information needed for the 

evaluation of the conditional mean is not available. 

• Furthermore, even if it were available, the evaluation of the 

conditional mean could be prohibitively complicated

A method that 

(1) is simple — yields the estimate as a linear function of the 

observation(s) and 

(2) requires little information —only first and second moments, is 

highly desirable. 

Such a method, called linear MMSE estimation, relies on the 

principle of orthogonality
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The best linear estimate (in the sense of MMSE) of a random variable 

in terms of another random variable — the observation(s) — is such 

that

1. The estimate is unbiased — the estimation error has mean zero, 

and

2. The estimation error is uncorrelated from the observation(s);

that is, they are orthogonal.

Linear MMSE Estimation for Zero-Mean Random 

Variables

in terms of a (normed linear) space of random variables

The set of real-valued scalar zero-mean random variables zi, i = 1,

. . . , n, can be considered as vectors in an abstract vector space or

linear space
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A (complete) vector space, in which one defines an inner product, 

is a Hilbert space

(correlation !)

Random variables under consideration are zero mean

satisfies the properties of a norm and can be taken as such.

With this definition of the norm, linear dependence is defined by 

stating that the norm of a linear combination of vectors is zero

If,                then z1 is a linear combination of z2, . . . , zm

that is, it is an element of the subspace spanned by z2, . . . , zm
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Two vectors are orthogonal, denoted as zi ⊥ zk, if and only if

which is equivalent to these zero-mean random variables being 

uncorrelated

The linear MMSE estimator of a zero-mean random variable x in terms 

of zi, i = 1, . . . , n, is given by

and has to be such that the norm of the estimation error is minimum

The linear MMSE estimate is denoted also by a circumflex (“hat”),

even though it is not the conditional mean.



Thus the norm of the estimation error

will have to be minimized with respect to βi, i = 1, . . . , n.

is seen to be equivalent to requiring the following orthogonality property:

This is the principle of orthogonality: 

In order for the error to have minimum norm, it has to be orthogonal to the 

observations. This is equivalent to stating that the estimate of x has to be 

the orthogonal projection of x into the space spanned by the observations
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Orthogonal projection of random variable x into the subspace of 

{z1, z2}.
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Linear MMSE Estimation for Nonzero-Mean Random 

Variables

For a random variable x with nonzero mean     , the best linear 

estimator is of the form

Since the MSE is the sum of the square of the mean and the variance

in order to minimize it, the estimate should have the unbiasedness

property



The error corresponding to this estimate is

This has transformed the nonzero-mean case into the zero-mean case.

The orthogonality principle then yields the coefficients βi from

The estimator is also known as the Best Linear Unbiased

Estimator BLUE

9/20/2022
ELEC-E8104

14



9/20/2022
ELEC-E8104

15

Linear MMSE Estimation for Vector Random Variables

Vector-valued random variables x and z, which are not necessarily

Gaussian or zero-mean.

The “best linear” estimate of x in terms of z 

The criterion for “best” is the MMSE: find the estimator that minimizes 

the scalar MSE criterion, the expected value of the squared norm of 

the estimation error

The linear MMSE estimator is such that the estimation error

is zero-mean (the estimate is unbiased) and orthogonal to the 

observation z



The estimate is the orthogonal projection of the vector x into the

space spanned by the observation vector z

The orthogonality requirement is, in the multidimensional case, that 

each component of      be orthogonal to each component of z.

the weighting matrix A

the linear MMSE estimator for the multidimensional case is identical to 

the conditional mean from the Gaussian case
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The matrix MSE corresponding is given by

And is identical expression to the conditional covariance in the 

Gaussian case

(strictly speaking, the matrix MSE is not a covariance matrix since the 

estimate is not the conditional mean)

Equations above are the fundamental equations of linear  

estimation
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Remarks

Note the distinction between the scalar MSE criterion, an inner 

product, and the matrix MSE, an outer product. The matrix MSE is 

sometimes called, with abuse of language, a covariance matrix.

From the above derivations it follows that

• the best estimator (in the MMSE sense) for Gaussian random 

variables

is identical to

• the best linear estimator for arbitrarily distributed random variables 

with the same first- and second-order moments.

The linear estimator  is the overall best if the random variables are

Gaussian; otherwise, it is only the best within the class of linear 

estimators
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Linear MMSE Estimation — Summary

The linear MMSE estimator of one random vector x in terms of 

another random vector z is such that the estimation error is

1. Zero-mean (the estimate is unbiased)

2. Uncorrelated from the measurements

These two properties imply that the error is orthogonal to the 

measurements. The principle of orthogonality.

The expression of the linear MMSE estimator is identical to the 

expression of the conditional mean of Gaussian random vectors if 

they have the same first two moments.

Similarly, the matrix MSE associated with the LMMSE estimator has 

the same expression as the conditional covariance in the Gaussian 

case. The linear MMSE estimator is

1. The overall best if the random variables are Gaussian

2. The best within the class of linear estimators otherwise



LEAST SQUARES ESTIMATION

The Batch LS Estimation

In the linear least squares (LS) problem it is desired to estimate the nx

vector x, modeled as an unknown constant, from the linear 

observations (nz-vectors)

to minimize the quadratic error
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The L S estimator that minimizes J is obtained by setting its gradient 

with respect to x to zero.

assuming the required inverse exists

• It can be easily shown that since Rk is positive definite, the 

Hessian  with respect to x is positive definite, and consequently 

the extremum point is a minimum.

• A batch estimator — the entire data have to be processed 

simultaneously for every k.

LS estimator is unbiased, because



The estimation error is

the covariance matrix of the LS estimator

The existence of the inverse of H’R−1H required  is equivalent to

having the covariance of the error finite. This amounts to requiring

the parameter x to be observable
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Relationship to the Maximum Likelihood (ML) 

Estimator

If the measurement errors w(i) are independent Gaussian random 

variables with mean zero and covariance R(i), then minimizing the LS 

criterion  is equivalent to maximizing the likelihood function

the LS and ML estimators coincide, LS is clearly a “disguised” ML 

technique
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The Recursive LS Estimator

In this case, k is interpreted as “discrete time.”
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The information is additive here because of the following:

1. The problem is static — the parameter is fixed.

2. The observations are modeled as independent.
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Alternative Expression for the Gain
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The Recursion for the Estimate

The above is the recursive parameter estimate updating equation

— the recursive LS estimator, written as
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The new (updated) estimate is therefore equal to the previous one plus 

a correction term. This correction term consists of the gain W(k+1) 

multiplying the residual — the difference between the observation 

z(k+1) and the predicted value of this observation. 

Since this is a recursive scheme, initialization is required, for example   

by using a batch technique on a small number of initial measurements 

or by using an “a priori” initial estimate and an associated covariance.

The Residual Covariance, S

Covariance of the residual, the difference (zero mean) between the 

observation (noise R)  and predicted observation based on estimate of 

x (covariance P), which are independent.
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Example of Prior Information, The Sample Mean

Noisy observations on a constant scalar x, w(i) independent and 

identically distributed random variables, zero mean, variance σ2
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The recursive form of the LS estimation

Or directly from the batch expression
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