ELEC-E8116 Model-based control systems
 /exercises 2

Problem 1

Prove that the solution of the state equation $=A x(t)+B u(t), \quad x\left(t_{0}\right)=x_{0}$ is

$$
x(t)=e^{A\left(t-t_{0}\right)} x_{0}+\int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) d \tau
$$

Problem 2

Derive the general solution for the discrete-time difference equation

$$
x(t+1)=A x(t)+B u(t), \quad x\left(t_{0}\right)=x_{0}
$$

Problem 3

The trace of a square matrix is defined as the sum of the elements in the main diagonal. Let A and B be square matrices of equal dimensions and C and D such matrices that $C D$ and $D C$ are both properly defined. Prove
a. $\quad \operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
b. $\quad \operatorname{tr}(C D)=\operatorname{tr}(D C)$

Problem 4

Square matrices B and A of equal dimensions are called similar, if there exists an invertible square matrix T such that

$$
B=T A T^{-1}
$$

Prove that similar matrices have the same eigenvalues, the same trace and the same determinant.

Problem 5

Consider the MISO-system

$$
y(t)=\frac{p+2}{p^{2}+2 p+1} u_{1}(t)+\frac{1}{p^{2}+3 p+2} u_{2}(t)
$$

Form a realization (state-space representation).

Problem 6

Consider the following optimization problem. Let

$$
\delta(t)=u(t), \quad x(0)=1
$$

and find an optimal control u, which minimizes the criterion

$$
J=\int_{0}^{\infty}\left[x^{2}(t)+u^{2}(t)\right] d t
$$

Prove that the solution can be presented in state feedback form $u^{*}(t)=-x(t)$. What is the optimal control as a function of time? What is the optimal cost?

Hint: Prove first the identity

$$
\int_{0}^{T}\left[x^{2}(t)+\{(t)] d t=x^{2}(0)-x^{2}(T)+\int_{0}^{T}[x(t)+\delta(t)]^{2} d t\right.
$$

