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Analysis of discrete-time 
systems

Stability
• Stability of one solution (non-linear and/or time-varying 

systems)
• System stability (global property of linear systems)
• Global stability vs. local stability (non-linear systems)
• (General) stability
• Asymptotic stability
• BIBO stability (Bounded Input - Bounded Output)

Stability of linear systems:
A linear, discrete, time-invariant system is 
asymptotically stable, if and only if all the 
eigenvalues of the system matrix Φ are inside the 
unit circle.

BIBO-stability vs. Lyapunov-stability

The general solution of the state equation
is

The behaviour of state x in the future depends on two terms: 
autonomous part (initial conditions) and control inputs.

Lyapunov stability concerns the autonomous part. The initial state 
is disturbed a bit, and it is investigated how this deviation behaves 
in the future; no control inputs are used.

BIBO-stability vs. Lyapunov-stability

BIBO-stability is related to the input/output-behaviour, and it is 
connected to the second term of the solution.  The system is BIBO-
stable (bounded input-bounded output), if a bounded input u leads 
to a bounded output y. 

E.g. a stock (integrator) and an ideal oscillator (harmonic oscillator) 
are marginally stable (generally stable) and Lyapunov stable, but 
not asymptotically stable nor BIBO-stable.

An inverted pendulum is unstable according to all definitions of 
stability.

An ideally mixed vessel (low-pass filter) is stable according to all 
above definitions.



10/14/2016

2

Marginal, asymptotic and general stability

Often the definitions are simplified by stating that by stability 
asymptotic stability is meant.  (An asymptotically stable system is 
always BIBO-stable.)

System

Stable Unstable

Asymptotically stable Marginally stable

Stability tests

• Direct calculation of the eigenvalues of Φ
• Study of the characteristic polynomial
• Root locus
• Nyquist criterion
• Lyapunov’s method

The Jury stability criterion
Consider the characteristic polynomial

With Jury’s test it is easy to check, whether all the poles are 
inside the unit circle i.e. whether the system is asymptotically 
stable

The Jury stability criterion
If a0 > 0, all the roots are inside the unit circle, if and only if

Consider a couple examples: The characteristic equation:
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The Jury stability criterion

so that all roots are inside the unit circle and the system is stable (in fact 
the roots can easily be solved directly; – 0.3333 ± 0.4714i).

The Jury table is formed as follows:  The last term of the first row is divided 
by the first term. The second row is multiplied by this factor.  
The second row is then subtracted from the first row, which gives the third 
row.  The fourth row is obtained by changing the row vector of the third row 
upside down.  Again a factor is formed by dividing the last term in the third 
row by the first one.  The procedure then continues as described above.  

The Jury stability criterion
The eigenvalues and roots of polynomials can most 
conveniently be calculated by using numerical routines and 
available software.  The
Jury method on the other hand can easily be used in the case 
of a small system,  when a computer is not at hand.

The real power of the Jury criterion comes into action in 
symbolic calculations.  Stability can then be determined as a 
function of one or even more parameters.  Consider the 
following example

The characteristic polynomial:

The Jury stability criterion
Form the Jury table

The system is stable,if

The Jury stability criterion

The Jury stability criterion
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The Jury stability criterion
The stability criteria thus become

The second group is not 
fulfilled with any values 
of α1 and α2

The Jury stability criterion

System with the characteristic polynomial

is stable for the values α1 and α2 such that:

Stability in frequency domain

The frequency response of G(s) is G(iω), ω  [0, [ .  It  can 
graphically be presented in the complex plane as the Nyquist
curve or as amplitude/phase curves as a function of frequency 
(Bode diagram).

Correspondingly, for a discrete system H(z) the frequency 
response is H(eiωh), ωh  [0, π] .  This can also be presented 
graphically as a discrete Nyquist or discrete Bode diagram.

The difference is, that in the discrete case only the frequency 
interval ωh  [- π, π[  is considered.

Stability in frequency domain

The continuous system

is sampled, (h = 0.4), giving the discrete ZOH-equivalent

Compare the continuous frequency response G(iω) with the 
discrete one H(eiωh), in the frequency range ω h  [0, π] .  
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Stability in frequency domain
sys=tf(1,[1 1.4 1])
Transfer function:

1
---------------
s^2 + 1.4 s + 1

sysd=c2d(sys,0.4)

Transfer function:
0.06609 z + 0.05481
---------------------
z^2 - 1.45 z + 0.5712

Sampling time: 0.4

w=logspace(-2,1,1000)';
bode(sys,w)
hold
bode(sysd,w)
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Stability in frequency domain

nyquist(sys,w)
hold
nyquist(sysd,w)
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Discrete Nyquist stability criterion

Discrete control system

Characteristic equation

Stability can be determined by using the open loop HOL(z) Nyquist
diagram. HOL(eih) (open loop Nyquist curve) encircles the point  -1 
N times clockwise.

in which Z is the number of zeros and P the number of poles of the 
characteristic equation outside the unit circle.

Discrete Nyquist stability criterion

This fact can be applied in stability analysis.  The characteristic 
equation (CE) has the form

The open loop (OL) poles are the same as the poles of the 
characteristic equation.  The zeros of the characteristic equation 
determine stability so that if the characteristic equation has zeros 
outside the unit circle, the closed loop system is unstable.  The 
stability criterion is thus obtained by setting Z= 0 and by demanding 
that the Nyquist curve encircles point -1 P times counterclockwise.
(Z=N+P=0)
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Discrete Nyquist stability criterion

The criterion becomes simple, if the open loop pulse transfer 
function has no poles outside the unit circle.  Then the Nyquist
curve must not encircle the point –1 at all.

Discrete Nyquist stability criterion

A process is controlled with a discrete P-controller, which has 
the gain K (h=1)

The discrete Nyquist diagram is constructed with Matlab

» sysd=zpk([],[0.2 0.5],0.4,1);

» nyquist(sysd)

Discrete Nyquist stability criterion Discrete Nyquist stability criterion

The interception point in the 
real axis can be found e.g. by 
using the  zoom-command.  By 
inspection, the point is 
approximately 
-0.4416

The magnitude can thus be 
multiplied with (1/0.4416) to 
reach the critical point -1.

The controlled system is stable when
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Discrete Nyquist stability criterion

Stability can also be determined by direct calculus from the 
pulse transfer function 

Substitute z with eiωh = eiω = cos(ω)+i sin (ω) ,(Euler formula),
which gives the frequency response H (eiωh)

Discrete Nyquist stability criterion

Setting the imaginary part 0 the interception point with the real 
axis is obtained 

Discrete Nyquist stability criterion

The frequency 0 describes the start point in the Nyquist curve 
and the frequency arccos(7/20) the interception point with the 
real axis.  Substitute it to the frequency response function

The interception point is  -0.444.  The gain of the controller K
can be multiplied by the factor (1/0.444) in order the crossing 
at point –1 to take place. The controlled system is stable,when

Symbolic frequency response calculated with
the MATLAB  symbolic toolbox

f='(4/10)/((z-(1/2))*(z-(2/10)))'
z='cos(w)+i*sin(w)'
g=subs(f,z)
g =

(4/10)/((cos(w)+i*sin(w)-(1/2))*(cos(w)+i*sin(w)-(2/10)))

g2=simplify(g)
g2 =

4/(20*cos(w)^2+20*i*cos(w)*sin(w)-7*cos(w)-9-7*i*sin(w))
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Gain and Phase margins

Definitions of gain and phase margins are identical to those of 
the continuous time systems.

Open loop pulse transfer function H(z)

ωo is the lowest frequency, for which 

ωc is the lowest frequency, for which 

Gain margin Phase margin

Reachability, observability 

Principal questions:
*  How can any state be transferred into any other state ?
*  How can a state be determined from observations ?

Consider the state-space 
realization
The solution at the time instant n (n is the dimension of the 
system or in other words the number of state components) is

If the rank of the matrix Wc is n, then n linear equations are 
obtained, from which the controls U can be calculated, which 
drive the system into any desired final state.

The system is controllable,  if it is possible to find a control 
sequence, which drives the system to the origin from any 
state in a finite time interval.

The system is reachable, if it is possible to find a control 
sequence, which drives the system from any state to any 
state in a finite time interval.  The system is stabilizable, if 
non-controllable states are asymptotically stable.

Reachability, observability

Reachability is a stronger property than controllability.  For 
example, if  Φn = 0, the state will go to the origin without any 
controls, so that the system is controllable while not 
necessarily reachable. 
The system is reachable, if and only if the rank of Wc is n
(Wc is the controllability matrix)

Ex.   System

is planned to be driven to i. origin  x = [0   0]T
ii. state  x = [0   3]T
iii. state  x = [-1   2]T

Reachability, observability
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Consider the reachability

For a square matrix the rank can be investigated by the 
determinant                     ,the rank is full, 
so the system is reachable and thus controllable also

Reachability, observability

The original state can be driven to any other state with (n = 
2) steps at the maximum.

i. x(2) = [0   0]T => U = [u(0)   u(1)]T = [0   0]T 

ii. x(2) = [0   3]T => U = [u(0)   u(1)]T = [3   0]T 

iii. x(2) = [-1   2]T => U = [u(0)   u(1)]T = [2   -1]T 

Reachability, observability

Consider reachability

the rank is not full, so that the system is not reachable.  
Nothing can be said about controllability by this analysis.

Reachability, observability

Let us check how the state behaves 

The first state cannot be influenced so that it is not 
reachable.  The origin can be reached and the system is 
controllable. The last state (iii) cannot be reached by any 
control sequence.

Reachability, observability
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On the other hand, both the origin (i) and the second state (ii) 
can be reached even with one control step

i. x(1) = [0   0]T => U = u(0) = -2
ii. x(1) = [0   3]T => U = u(0) = 1
iii. x(1) = [-1   2]T => Not reachable
If the aim is to reach the desired states only after two steps, 
the first control step can be arbitrary 

i. x(2) = [0   0]T => U = [u(0) u(1)]T = [*   0]T 

ii. x(2) = [0   3]T => U = [u(0) u(1)]T = [*   3]T 

iii. x(2) = [-1   2]T => Not reachable

Reachability, observability

Consider

Let the output signal y and control signal u be known from 
previous time instants. Based on this the aim is to find x0.  
Consider the solution for y.

Reachability, observability

Because the control u is known at time instants k = 0 … n -
1, the determination of x0 does not depend on the weighted 
sum of controls.  The formula of y can be divided into two 
parts; one depending on the initial condition yx and one 
depending on controls yu.

The initial condition is found if  yx can be solved at different 
time instants.
Putting the equations at different time instants together gives

Reachability, observability

The initial condition x0 can be calculated,if Wo is of full rank.

The system is observable, if and only if the rank of Wo is n.

The system is detectable, if non-observable states are 
stable.

Reachability, observability
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Canonical forms
The same system can be described by the difference 
equation

or by the pulse transfer operator or by the pulse transfer 
function

or by the state-space representation.  The last alternative is 
not unique, since it is possible to form an indefinite number of 
state-space representations, which give the same input-
output behaviour (e.g. diagonal form or Jordan form)

Canonical forms

With respect to reachability and observability the most 
important forms are the controllable canonical form and the 
observable canonical form.
Controllable canonical form:

Canonical forms

The observable canonical form:

Both of these have an alternative version, in which the states 
have been chosen in the reverse order.

Canonical forms
The above forms are as such valid only for strictly proper 
systems, but by small modifications they can be modified 
also in the case that the D-matrix is non-zero.  However, the 
state-space representation must always be causal, i.e. na 
nb.  

If nb is much smaller than na ,the formulas will point to 
coefficients of the B-polynomial, which do not exist (e.g. b-1 , 
b-2 , …).  These can always be set to zero.
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Canonical forms

Develop controllable canonical forms for the given pulse 
transfer functions:

Non-reachable and/or non-observable systems

There may be several reasons, why a discrete system is not 
reachable or observable:  

* The original continuous system (which is then sampled) is 
not reachable or observable.

* Hidden oscillations (sampling frequency too low)

* Pole-zero cancellation.  Reachability is lost, if sampling 
leads to a system with a common pole and zero.  The 
sampling interval must be changed.

Analysis of simple control loops

Control problems:  

* Regulator problem
Setpoint is constant

* Combination of regulator and servo problems
e.g. several but rare step changes in the setpoint. 

* Servo problem
The changing setpoint trajectory must be followed.

Analysis of simple control loops

Classification of disturbances:  

* Load disturbance
Influence on control variables, often stepwise and 
change the long term average (low frequencies)

* Measurement noise
Often high-frequency noise caused by measurement  
devices.

* Parameter changes
System parameters change with time. 
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Analysis of simple control loops

Typical disturbance models, which are used in system 
analysis  

* Impulse and pulse

* Step

* Ramp

* Sinusoid

* Noise

Hidden oscillations
The following model is 
simulated and the response 
is sampled with different 
sampling intervals (h = 3, 2, 
1, 0.5)

Hidden oscillations

What is really happening in 
the system, can be seen from 
the figures.

This is an example of hidden 
oscillations or ripple.


