ELEC-E8107 - Stochastic models, estimation and control

Arts VISALA, and Issouf OUATTARA

September 26, 2022

Exercises Session 1

Exercise 1

A parameter x is measured with correlated (rather than independent) addidive Gaussian noises, such that:

$$
z_{k}=x+w_{k},
$$

where, $k=1 \ldots n$ and the mean value of the noise at instant k is $E\left[w_{k}\right]=0$, while the variances are:

$$
E\left[w_{k} w_{j}\right]=\left\{\begin{array}{ll}
1, & \text { if } k=j- \\
\rho, & \text { if }|k-j|=1 \\
0, & \text { if }|k-j|>1
\end{array} \quad \boldsymbol{p}(\boldsymbol{x} \mid \mathbf{z})=\frac{\mathbf{p}(\mathbf{z} \mid \boldsymbol{x}) \boldsymbol{p}(\boldsymbol{x})}{\mathbf{p}(\mathbf{z})}\right.
$$

For $n=2$:

1. Compute the likelihood function of the parameter x
2. Find the MLE of x.
3. Find the CRLB for the estimation of x.
4. Is the MLE efficient?

Solution Exercise 1

1. The likelihood function

The likelihood function is the probability density function of the measurement conditioned on the parameter of interest. For $n=2$, the likelihood function is given by:

$$
\begin{aligned}
\Lambda(x) & =p(z \mid x) \\
& =p\left(z_{1}, z_{2} \mid x\right) \\
& =c e^{-\frac{1}{2} Q(x)}
\end{aligned}
$$

With:

$$
\begin{aligned}
Q(x) & =(z-x)^{T} P^{-1}(z-x) \\
& =\left[\begin{array}{ll}
z_{1}-x & z_{2}-x
\end{array}\right] P^{-1}\left[\begin{array}{l}
z_{1}-x \\
z_{2}-x
\end{array}\right]
\end{aligned}
$$

Where P is the covariance matrix associated with the noise vector $w=$ $\left[\begin{array}{ll}w_{1} & w_{2}\end{array}\right]^{T} . P$ is computed as:

$$
\begin{aligned}
& P=E\left[(\boldsymbol{\omega}-\overline{\boldsymbol{w}})(\boldsymbol{\omega}-\overline{\boldsymbol{\omega}})^{T}\right] \quad P=E\left[w w^{T}\right] \\
& E\left[\omega_{1} \omega_{1}\right]=1 \\
& =E\left[\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] \cdot\left[\begin{array}{ll}
w_{1} & w_{2}
\end{array}\right]\right] \\
& =E\left[\left[\begin{array}{ll}
w_{1} w_{1} & w_{1} w_{2} \\
w_{2} w_{1} & w_{2} w_{2}
\end{array}\right]\right]
\end{aligned}
$$

From the problem statement we have: $E\left[w_{1} w_{1}\right]=E\left[w_{2} w_{2}\right]=1$ and $E\left[w_{1} w_{2}\right]=$ $E\left[w_{2} w_{1}\right]=\rho$. So

$$
P=\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]
$$

And

$$
P^{-1}=\frac{1}{1-\rho^{2}}\left[\begin{array}{cc}
1 & -\rho \\
-\rho & 1
\end{array}\right] \quad(\forall \rho \neq 1)
$$

2. The MLE of x

The maximum likelihood estimate of the parameter x is given by:

$$
\hat{x}_{M L}=\underset{x}{\arg \max } \Lambda(x)=\underset{x}{\arg \min } Q(x)
$$

$$
\begin{aligned}
& y=f(x) g(x) \\
& \frac{\partial y}{\partial x}=\frac{\partial f(x)}{\partial x} g+f \cdot \frac{\partial g}{\partial x}
\end{aligned}
$$

$$
\left(P^{-1}\right)^{\top}=P^{-1}
$$

$\hat{x}_{M L}$ can be found by taking the derivatives of $Q(x)$ with respect to the parameter x and set it to zero:

$$
\begin{aligned}
\frac{\partial}{\partial x} Q(x) & =\frac{\partial}{\partial x}\left(\left[\begin{array}{ll}
z_{1}-x & z_{2}-x
\end{array}\right] P^{-1}\left[\begin{array}{l}
z_{1}-x \\
z_{2}-x
\end{array}\right]\right) \\
& =\left[\begin{array}{ll}
\frac{\partial\left(z_{1}-x\right)}{\partial x} & \frac{\partial\left(z_{2}-x\right)}{\partial x}
\end{array}\right] P^{-1}\left[\begin{array}{l}
z_{1}-x \\
z_{2}-x
\end{array}\right]+\left[\begin{array}{ll}
z_{1}-x & z_{2}-x
\end{array}\right] P^{-1}\left[\begin{array}{l}
\frac{\partial\left(z_{1}-x\right)}{\partial x} \\
\frac{\partial\left(z_{2}-x\right)}{\partial x}
\end{array}\right] \\
& =\left[\begin{array}{ll}
-1 & -1
\end{array}\right] P^{-1}\left[\begin{array}{l}
z_{1}-x \\
z_{2}-x
\end{array}\right]+\left[\begin{array}{ll}
z_{1}-x & z_{2}-x
\end{array}\right] P^{-1}\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]
\end{aligned}
$$

Note that $\mathrm{Q}(\mathrm{x})$ is a scalar. And the derivative with respect to a scalar is also a scalar. In the last expression of the derivative, the two terms are scalars and transpose of each other (It is the case because P is a symmetric matrix, $P=P^{T}$). We can write the following:
4. Efficiency of the MLE

$$
\begin{aligned}
\hat{x}_{M L} & =\frac{1}{2}\left(z_{1}+z_{2}\right) \\
& =\frac{1}{2}\left(2 x+w_{1}+w_{2}\right) \\
& =x+\frac{1}{2}\left(w_{1}+w_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\wedge & \wedge
\end{array}\right]\left[\begin{array}{cc}
1 & -\rho \\
-\boldsymbol{\rho} & 1
\end{array}\right]\left[\begin{array}{l}
z_{n}-x \\
z_{\mathbf{z}}-\boldsymbol{x}
\end{array}\right] \quad \frac{\partial}{\partial x} Q(x)=-2\left[\begin{array}{ll}
1 & 1
\end{array}\right] P^{-1}\left[\begin{array}{l}
z_{1}-x \\
z_{2}-x
\end{array}\right]=0} \\
& \frac{\partial^{2} \phi(x)}{\partial x^{2}}=4 \frac{1-p}{1-p^{2}} \\
& \begin{array}{c}
{\left[\begin{array}{ll}
1-\rho & 1-\rho
\end{array}\right]\left[\begin{array}{l}
1 \\
z_{1}-x \\
z_{2}-x
\end{array}\right]=(\boldsymbol{n}-\rho)\left(z_{1}-x+z_{2}-x\right)} \\
\text { Then } \hat{x}_{M L}=-\frac{1}{2}\left(z_{1}+z_{2}\right) \quad \forall|\rho| \neq 1 \\
\text { 3. The CRLB of the estimation According to the lecture slide, and } 1+\rho) \frac{1-\rho}{1-\rho^{2}}=0
\end{array} \\
& \text { the textbook of the course (page 109), the CRLB can be computed by taking } \\
& \text { the second derivative of the likelihood function with respect to the variable } \\
& \text { that is being estimated. } \\
& J=-\left.E\left[\frac{\partial^{2} \ln \Lambda(x)}{\partial x^{2}}\right]\right|_{x=x_{0}} \\
& \begin{array}{l}
J=-E[-\ln (x)]=-E\left[\frac{\partial^{2}\left(-\frac{1}{2} \Phi(x)\right)}{\partial x^{2}}\right] \\
J=\frac{e^{2}}{1+\rho}
\end{array} \\
& J^{-1}=\frac{1+\rho}{2}
\end{aligned}
$$

By taking the mean of the above we have $E\left[\hat{x}_{M L}\right]=E[x]$, the estimator is unbiased. The variance of the estimator is:

$$
\begin{aligned}
\sigma^{2} & =\frac{E\left[\frac{1}{2}\right.}{}=\frac{1}{4} E\left[\left(w_{1}+w_{2}\right)^{2}\right] \quad=\frac{1}{4}\left(E\left[w_{1}^{2}\right)+E\left[w_{2}^{2}\right]+2 E\left[w_{1} w_{2}\right]\right) \quad \text { (see the definition of P for each term: } \\
& =\frac{1+\rho}{2}=J^{-1} \quad \frac{1}{\ell}(\mathbf{1}+\mathbf{1}+\mathbf{2} \rho)
\end{aligned}
$$

The MLE is efficient.

Exercise 2
Given $z=x+w$, where all the variables are n -vectors, with:

$$
w \sim \mathcal{N}(0, P) \quad x \sim \mathcal{N}\left(\bar{x}, P_{0}\right)
$$

x and w are independent. Find the MAP estimator of x in terms of z and the covariance of this estimator.

Solution Exercise 2
The posterior pdf is given by:

$$
\begin{aligned}
p(x \mid z) & =\frac{p(z \mid x) p(x)}{p(z)} \sim \mathbf{C}_{\mathbf{2}} \mathbf{e}^{\left.-\frac{1}{2}(\boldsymbol{x}-\bar{x})^{\top} \mathbf{P}_{0}^{-1}(x-\bar{x})\right)} \\
& =\frac{\mathcal{N}(z, x, P) \mathcal{N}\left(x, \bar{x}, P_{0}\right)}{p(z)} \\
& \propto \frac{\exp \left(\frac{-1}{2}\left((z-x)^{T} P^{-1}(z-x)+(x-\bar{x})^{T} P_{0}^{-1}(x-\bar{x})\right)\right)}{p(z)} \\
& \propto \frac{\exp \left(\frac{-1}{2} Q(x)\right)}{p(z)}
\end{aligned}
$$

with $Q(x)=(z-x)^{T} P^{-1}(z-x)+(x-\bar{x})^{T} P_{0}^{-1}(x-\bar{x})$.
The MAP is defined as:

$$
\begin{aligned}
& \hat{x}_{M A P}=\underset{x}{\arg \max } p(x \mid z) \\
& \mathbf{P}_{0}\left(\boldsymbol{r}_{0}+\boldsymbol{p}\right)^{-1}=\underset{\arg \min Q(x)}{ } \\
& \begin{aligned}
Z & =x+w \\
E[Z] & =E[x]+E[\omega]
\end{aligned} \\
& x_{M A P}=\bar{x}+p_{x_{2}} p_{2 z}^{-1}(z-\bar{z}) \\
& x_{\text {mar }}=\bar{x}+P_{0}\left(P+P_{0}\right)^{-1}(2-\bar{x}) \\
& P_{22}=E\left[(z-\bar{z})(z-\bar{z})^{\top}\right] \\
& \begin{array}{l}
=E\left[(x+w-\bar{x})(x+w-\bar{x})^{\top}\right] \\
=E\left[((x-\bar{x})+w)((x-\bar{x})+w)^{\top}\right]=E\left[\begin{array}{cc}
P_{0} & 0
\end{array} 0 \quad P\right.
\end{array}
\end{aligned}
$$

This can be achieved by taking the $\$$ radient of $Q(x)$ with respect to x and setting it to zero.

$$
\nabla_{x} Q(x)=P^{-1}(z-x)+P_{0}^{-1}(x-\bar{x})=0
$$

Which results in:

$$
\hat{x}_{M A P}=\left(P^{-1}+P_{0}^{-1}\right)^{-1}\left(P^{-1} z+P_{0}^{-1} \bar{x}\right)=\bar{x}+P_{0}\left(P+P_{0}\right)^{-1}(z-\bar{x})
$$

The covariance is given by (see 1.4.14-18):

$$
\begin{aligned}
\operatorname{cov}\left(\hat{x}_{M A P}\right) & =P_{x x}-P_{x z} P_{z z}^{-1} P_{z x} \\
& =P_{0}-P_{0}\left(P+P_{0}\right)^{-1} P_{0}
\end{aligned}
$$

Exercise 3

The model for a vehicle moving at a constant speed is $y_{i}=v t_{i}+e_{i}$. The position is measured as a function of time as shown in the Table below:

Time	0	1	2	3	4	10	12	18
Distance	4.71	9	15	19	20	45	55	78

The noise e_{i} are such that $E\left[e_{i}^{2}\right]=R_{i}=0.9^{8-i}$. Use the batch least square method to estimate the velocity. (Write a Matlab script)

Solution Exercise 3

The observation model $y_{i}=v t_{i}+e_{i}$ can be written as in the lecture textbook:

$$
z(i)=H(i) x+w(i)
$$

According to (3.4.1-9, page 130 textbook), the solution of the batch least square estimate is given by:

$$
\hat{x}(k)=\left[H^{k^{\prime}}\left(R^{k}\right)^{-1} H^{k}\right]^{-1} H^{k^{\prime}}\left(R^{k}\right)^{-1} z^{k}
$$

This can be computed using the following matlab script:

```
%% Batch LS Estimator.
time = [0 1 1 2 3 3 4 10 12 18]'; H = time;
Dist = [4.71 9 15 19 20 45 55 78]'; z = Dist;
invR = diag(0.9.^(7:-1:0));
% The estimate of the speed.
v_batch = (H'*invR*H)^-1*H'*invR*z;
```


Exercise 4

Use the recursive least square method to estimate the velocity in the above problem. (Write a Matlab script)

Solution Exercise 4

The recursive least square algorithm is given in lecture slide 2 b and in the textbook (page 132 to 134). The following matlab script compute the recursive least square solution:

```
%% Recursive LS Estimator
P = 1e6; % Initial covariance.
v_recursive = 0; % First estimate.
v_recursive_plot = zeros(1, 8);
P_vector = zeros (1,8);
% LS estimator algorithm
for i = 1:8
    S = H(i,:)*P*H(i,:)' + inv(invR(i,i));
    W = P*H(i,: )'*S^-1;
    P = P - W*S*W';
    P_vector(i) = P;
    v_recursive = v_recursive + W*(z(i)-H(i,:)*v_recursive);
    % Recursive speed estimation each recursion
    v_recursive_plot(i) = v_recursive;
end
```

Figure 1 shows the comparison of the two different techniques to compute the LS estimator. In the recursive algorithm, the information at instant $k+1$ equals the sum of the information at k and the new information about x obtained from new measurement $z(k+1)$.

Notice that the LS estimate \hat{x} values from both algorithms become similar at the last time instant. Also, the recursive algorithm requires an initial values of the \hat{x} and covariance matrix P. In this case, we selected $\hat{x}_{\text {init }}=0$ with $P=1.0 \times 10^{6}$. Setting a high initial covariance (of the LS estimate) means that we do not know anything about the process at the start.

Speed profile of the vehicle.

Figure 1: Top: Comparison of Batch and Recursive LS estimators. Bottom: Illustration of how the covariance evolves as the LS estimator does the estimation.

