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Exercise 1 < -
A parameter x is measured with correlated (rather than independent) addi-
tive Gaussian noises, such that:
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where, £k = 1...n and the mean value of the noise at instant k is E[wg] = 0,
while the variances are:
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For n =2
1. Compute the likelihood function of the parameter x
2. Find the MLE of x.
3. Find the CRLB for the estimation of x.

4. Is the MLE efficient?



Solution Exercise 1

1. The likelihood function

The likelihood function is the probability density function of the measure-
ment conditioned on the parameter of interest. For n = 2, the likelihood
function is given by:

A(z) = p(z|x)
= p(z1, 22/z)
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With:
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Where P is the covariance matrix associated with the noise vector w =
[wy  wy]T. P is computed as:
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From the problem statement we have: Elwiw;| = Elwsws] = 1 and E[wyws] =
Elwywq] = p. So
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2. The MLE of x

The maximum likelihood estimate of the parameter z is given by:

z,,, = argmax A(x) = argmin Q(z)
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z,,, can be found by taking the derivatives of Q(z) with respect to the
parameter x and set it to zero:
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Note that Q(x) is a scalar. And the derivative with respect to a scalar is also
a scalar. In the last expression of the derivative, the two terms are scalars
and transpose of each other (It is the case because P is a symmetric matrix,
P = PT). We can write the following:
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3. The CRLB of the estimation According to the lecture shde and ’“'f
the textbook of the course (page 109), the CRLB can be computed by taking

the second derivative of the likelihood function with respect to the variable

that is being estimated. 91‘ %4(1)) - 8
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4. Efficiency of the MLE
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By taking the mean of the above we have E[%,,,] = E[z], the estimator is
unbiased. The variance of the estimator is:
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The MLE is efficient.

Exercise 2
Given z = x 4+ w, where all the variables are n-vectors, with:
w~ N(0,P) r~N(z, R)
x and w are independent. Find the MAP estimator of x in terms of z and
the covariance of this estimator.
Solution Exercise 2
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The posterior pdf is given by: é(-" x)'e (z%)
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with Q(z) = (z —2)"P~ ' (z —2) + (z — 2)" Py *(z — 7).
The MAP is defined as:
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This can be achieved byNaking the gradient of Q(z) with respect to x and
setting it to zero.

V.Q(r) =P ' (z —2)+ Py (x — 1) =0
Which results in:
Bppap =P+ P ) (P 2+ P't) =2+ PB(P+ Ry) (2 — )
The covariance is given by (see 1.4.14-18):
cov(Z,,,p) = Pz — Po. P Pay
=Py~ P(P+P)"'P
Exercise 3

The model for a vehicle moving at a constant speed is y; = vt; + ¢;. The
position is measured as a function of time as shown in the Table below:

Time 0O (1|2 ]3]4]10|12|18
Distance | 4.71 | 9| 15|19 | 20 | 45 | 55 | 78

The noise e; are such that F[e?] = R; = 0.9%7°. Use the batch least square
method to estimate the velocity. (Write a Matlab script)

Solution Exercise 3

The observation model y; = vt; +e; can be written as in the lecture textbook:
(1) = H(1)z + w(i)

According to (3.4.1-9, page 130 textbook), the solution of the batch least
square estimate is given by:

(k) = {Hk'(Rk)lek]*l HY (RF)~12F

This can be computed using the following matlab script:

%% Batch LS Estimator.

time = [0 1 2 3 4 10 12 18]’; H = time;
Dist = [4.71 9 15 19 20 45 55 78]°’; z = Dist;
invR = diag(0.9.7(7:-1:0));
% The estimate of the speed.
v_batch = (H’*invR*H) " -1*H’*invR*z;
— Ty, g




Exercise 4

Use the recursive least square method to estimate the velocity in the above
problem. (Write a Matlab script)

Solution Exercise 4

The recursive least square algorithm is given in lecture slide 2b and in the
textbook (page 132 to 134). The following matlab script compute the recur-
sive least square solution:

%% Recursive LS Estimator
P = 1e6; % Initial covariance.
v_recursive = 0; 7 First estimate.
v_recursive_plot = zeros(1,8);
P_vector = zeros(1,8);
% LS estimator algorithm
for i = 1:8
S = H(i,:)*P*xH(i,:)’ + inv(invR(i,i));
W P*H(i,:) ’*S~-1;
P =P - WkxSxW’;
P_vector (i) = P;

v_recursive = v_recursive + W*x(z(i)-H(i,:)*v_recursive);
% Recursive speed estimation each recursion
v_recursive_plot (i) = v_recursive;

end

Figure 1 shows the comparison of the two different techniques to compute
the LS estimator. In the recursive algorithm, the information at instant
k 41 equals the sum of the information at k and the new information about
x obtained from new measurement z(k + 1).

Notice that the LS estimate & values from both algorithms become similar at
the last time instant. Also, the recursive algorithm requires an initial values
of the Z and covariance matrix P. In this case, we selected Zj,;; = 0 with
P = 1.0 x 10°. Setting a high initial covariance (of the LS estimate) means
that we do not know anything about the process at the start.




Speed profile of the vehicle.
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Figure 1: Top: Comparison of Batch and Recursive LS estimators. Bot-
tom: Illustration of how the covariance evolves as the LS estimator does the
estimation.



