Density-Functional Theory for Practitioners - Lecture 4

Orlando Silveira Júnior, Adolfo Otero Fumega and Ondřej Krejčí, (Developed by Patrick Rinke and Milica Todorović)

Aalto University School of Science Department of Applied Physics

Revision

At your table, reflect on last week's lecture and tutorial:

- What did you learn about solids?
- What did you find difficult or easy in running the calculations?
- How did the calculations help you understand DFT better?

This lesson

Must know	Should know	Nice to know
Crystal structures	Primitive unit cell	Brillouin zone
Cohesive energy	Bulk-phase diagram	Murnaghan fit
Phonons	Phonon dispersion	Dynamical matrix
Principles of bonding	Different bonding types	Bond formation

Learning outcomes

After completion of this class you

- are familiar with crystal structures and their unit cells.
- know how to calculate cohesive properties of solids.
- know how to calculate phonons with DFT.

Last time in this very place

Aalto University School of Science

$$\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$$

a1

|a₁|=|a₂|, φ=90°

centered rectangular

|a₁|≠|a₂|, φ≠90°

|a₁|≠|a₂|, φ≠90°

cubic

bcc

simple

tetragonal

simple monoclinic

monoclinic

hexagonal

rhombohedral

hcp

triclinic

simple body-centered orthorhombic orthorhombic

base-centered orthorhombic

body-centered

tetragonal

face-centered orthorhombic

Fractional coordinates

lattice vectors:

$$a_1 = a \left(\frac{3}{2}, +\frac{\sqrt{3}}{2}\right)$$
$$a_1 = a \left(\frac{3}{2}, -\frac{\sqrt{3}}{2}\right)$$

Fractional coordinates

lattice vectors:

$$a_1 = a \left(\frac{3}{2}, +\frac{\sqrt{3}}{2}\right)$$
$$a_1 = a \left(\frac{3}{2}, -\frac{\sqrt{3}}{2}\right)$$

Basis (cartesian):

 $R_a = (0,0)$ $R_b = a(2,0)$

Basis (fractional):

$$R_a = (0,0)$$

 $R_b = \frac{2}{3}(a_1 + a_2) = \left(\frac{2}{3}, \frac{2}{3}\right)$

Fractional coordinates

Fractional coordinates are atomic coordinates that are given in terms of the basis vectors.

Basis (fractional):

$$R_{a} = (0,0)$$
$$R_{b} = \frac{2}{3}(a_{1} + a_{2})$$
$$= \left(\frac{2}{3}, \frac{2}{3}\right)$$

Fractional coordinates in 3D

Silicon in the diamond structure

lattice vectors: $\mathbf{a}_1 = a/2 \ (0, 1, 1)$ $\mathbf{a}_2 = a/2 \ (1, 0, 1)$ $\mathbf{a}_3 = a/2 \ (1, 1, 0)$

face-centered cubic

basis (Fractional): $\mathbf{R}_A = (0,0,0)$ $\mathbf{R}_B = \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$

basis (Cartesian): $\mathbf{R}_{A} = (0, 0, 0)$ $\mathbf{R}_{B} = a/4 (1, 1, 1)$

Cohesive energy of solids

Cohesive energy *vs* **volume curve**

In solids it is convenient to plot Ecoh versus volume.

Aalto University School of Science

Birch-Murnaghan equation of state

The bulk modulus of a substance measures the substance's resistance to uniform compression. E Eo Vo bulk modulus derivative bulk modulus $E(V) = E_0 + \frac{B_0 V}{B'_0} \left[\frac{(V_0/V)^{B'_0}}{B'_0 - 1} + 1 \right] - \frac{B_0 V_0}{B'_0 - 1}$

Aalto University School of Science F. D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944)F. Birch, Phys. Rev. 71, 809 (1947)

Aalto University School of Science

Simple phase diagrams

Volume

Simple phase diagrams

pressure

Questions on phases?

pressure

Phonons — Harmonic approximation

Hessian matrix

$$\Phi_{ij} = \frac{\partial^2 E_0}{\partial \mathbf{R}_i \partial \mathbf{R}_j}$$

Hessian matrix (or atomic force constants)

Can be calculated with density-functional perturbation theory (DFPT).

Hessian matrix

$$\Phi_{ij} = \frac{\partial^2 E_0}{\partial \mathbf{R}_i \partial \mathbf{R}_j} = -\frac{\partial}{\partial \mathbf{R}_i} \mathbf{F}_j \approx \frac{\mathbf{F}_j(\mathbf{R}_i^0 + \epsilon \mathbf{d}_i)}{\epsilon}$$

Hessian matrix (or atomic force constants)

Or it can be calculated with DFT and finite differences.

K. Kunc, and R. M. Martin, Phys. Rev. Lett. 48, 406 (1982) K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997)

Hessian matrix

$$\Phi_{ij} = \frac{\partial^2 E_0}{\partial \mathbf{R}_i \partial \mathbf{R}_j} = -\frac{\partial}{\partial \mathbf{R}_i} \mathbf{F}_j \approx \frac{\mathbf{F}_j(\mathbf{R}_i^0 + \epsilon \mathbf{d}_i)}{\epsilon}$$

Hessian matrix (or atomic force constants)

Or it can be calculated with DFT and finite differences.

For example with the phonopy code.

A.Togo, F. Oba, and I.Tanaka, Phys. Rev. B 78, 134106 (2008)

Hessian matrix — molecules vs solids

number of atoms : **N**

degrees of freedom : **3N**

dimension of Hessian : 9N²

number of atoms : **N**

degrees of freedom : 3N

dimension of Hessian : 9N²

Periodic boundary conditions

periodic images periodic images

Periodic boundary conditions

periodic images unit cell - N_p atoms periodic images

real-spacereciprocal-spaceHessian
$$\Phi_{ij}$$
dynamical matrix $D_{i'j'}(\mathbf{q})$ $i, j \to \infty$ Fourier transform $D_{i'j'}(\mathbf{q}) = \sum_{j} \frac{e^{i\left(\mathbf{q}(\mathbf{R}_{j}^{0} - \mathbf{R}_{j'}^{0})\right)}}{\sqrt{M_{i'}M_{j'}}} \Phi_{i'j}$

Aalto University School of Science K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997)

Periodic boundary conditions

real-space

reciprocal-space

$$D_{i'j'}(\mathbf{q}) = \sum_{j} \frac{e^{i\left(\mathbf{q}(\mathbf{R}_{j}^{0} - \mathbf{R}_{j'}^{0})\right)}}{\sqrt{M_{i'}M_{j'}}} \Phi_{i'j}$$

Fourier transform can be truncated since $\Phi_{ij} = 0 \quad \text{for large} \ \left| \mathbf{R}_{j}^{0} - \mathbf{R}_{j'}^{0} \right|$

Hessian Φ_{ij} with finite number of entries dynamical matrix $D_{i'j'}(\mathbf{q})$ for whole reciprocal space

Aalto University School of Science K. Pa

School of Science K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997)

Phonon band structure

Eigenvalue problem:
$$D(q)\nu(q) = \omega^{2}(q)\nu(q)$$
$$f(q) = \omega^{2}(q)\nu(q)$$

Phonon band structure

$$\omega(q) \quad N_{p} = 2, \text{ Dimensionality} = 1$$

$$DoF = 2^{*1}$$

$$D(q)\nu(q) = \omega^{2}(q)\nu(q)$$

$$Dependency \text{ on where we} are in the reciprocal space}$$

$$How these modes look like?$$

Phonon band structure – back in 3D

HfS₂ 3 acoustic modes

- atoms in unit cell in phase
- vanish at Γ
- strong linear dispersion at Γ

3N_p-3 optical modes

• atoms in unit cell out of phase

Aalto University School of Science

- frequency always > 0
- weak dispersion

Questions?

Interesting links:

FHI-vibes: different types of vibrations and phonon calculations https://vibes-developers.gitlab.io/vibes/

All your FHI-aims calculations and preparing workflows on one website: https://gims.ms1p.org/static/index.html

Building a molecule/monocrystalic structure/monocrystalic surface through python (Atomic Simulation Environment): https://wiki.fysik.dtu.dk/ase/ase/build/build.html

