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Revision

At your table, reflect on last week’s lecture and tutorial:

» What did you learn about solids?

* What did you find difficult or easy in running the
calculations?

* How did the calculations help you understand DFT
better?
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Must know

Crystal structures

Cohesive energy

Phonons

Principles of
bonding
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Should know

Primitive unit cell

Bulk-phase
diagram

Phonon
dispersion

Different bonding
types

Nice to know

Brillouin zone

Murnaghan fit

Dynamical
matrix

Bond
formation



Learning outcomes

After completion of this class you

 are familiar with crystal structures and their unit cells.
* know how to calculate cohesive properties of solids.
* know how to calculate phonons with DFT.
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Last time In this very place
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Unit cell: lattice vectors + basis

~ i

The unit cell atoms are called the basis. ‘
< < < - - - <
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nia; + Ngdg + N3as
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Bravais lattice: space-filling lattice of the type

Aalto University
School of Science
[ |



Bravais lattices in 2D
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Bravais lattices in 2D

square rectangular
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Bravais lattices in 2D

square rectangular oblique
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Bravais lattices in 2D

centered rectanqular
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Bravais lattices in 2D

centered rectangular hexagonal

OOO

Only 5
different

lattices
In 2D.

|a1]|=|az|, =120°

lai|#|az]|, @#90°
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Bravais lattices in 3D

I

I
' ’
simple cubic body-centered face-centered -

cubic cubic rhombohedral hexagonal hcp
SC fccleep

i

simple base-centered triclinic
monoclinic monoclinic

simple body-centered
tetragonal tetragonal

In 3D there are 14
different lattices.

simple  body-centered
orthorhombic orthorhombic

base-centered face-centered

orthorhombic orthorhombic
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Fractional coordinates

lattice vectors:

3+%)
a =a E’-I_?
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a=a\y =7
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Fractional coordinates

lattice vectors:

-a3+3)
1=\
B (3 \/§)
a=a 2, >
Basis (cartesian):
Ra — (O)O)
Rb — a(Z,O)
Basis (fractional):
R, = (0,0)
Ry = %(Ch +a;) = (g,g)
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Fractional coordinates

Fractional coordinates are
atomic coordinates that are
given in terms of the basis

vVectors.

Basis (fractional):
Ra — (0,0)
2
Ry = (a; + a;)

=(53)
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Fractional coordinates in 3D

Silicon In the
diamond structure
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lattice vectors: A"

aA] — (L/Q (O, 1, :-) ,’;
ar = a / ) (1, O, :_) face;:lirilzered

a3 — a/2 (1, 1, O) fcc/cep

basis (Fractional):
R, = (0,0,0)

R, (1,1,1)
44" 4
basis (Cartesian):
R4 =(0,0,0)
Rg=a/4(1,1,1)




Cohesive energy of solids

# atoms



Cohesive energy vs volume curve

Ecoh

V

In solids it iIs convenient to plot Econ Versus volume.
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Cohesive energy vs volume curve

“E, equilibrium energy

V
Vo

equilibrium volume

Quadratic approximation (later useful for phonons)
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Birch-Murnaghan equation of state

The bulk modulus of a substance measures the
substance's resistance to uniform compression.

V
Vo /bulk modulus derivative
bulk modulus ~
~ B’ -
BV [ (Vo/v)Po BoVa
EV)=Eo+ 5 |"pr—1 Y -1
0 i 0o 1 0o

A gglhtgolfrg:g?lgxce F. D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944)

0 F. Birch, Phys. Rev. 71, 809 (1947)



Cohesive energy

Simple phase diagrams

phase 2
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phase 1

Volume



Cohesive energy

Simple phase diagrams

phase 2

pressure

_OF
P= v

phase 1
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Simple phase diagrams

Cohesive energy

pressure

phase 2 p = 8_E
oV

phase 1

* The slope of Econ gives the pressure.
* Two phases are in equilibrium when p1=po.

A:
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Cohesive energy

Simple phase diagrams

Find the common tangent
(Maxwell construction).

/

If we repeat this exercise
for different temperatures
we obtain the phase

diagram.

Volume
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Simple phase diagrams

temperature

pressure
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Questions on phases?

temperature

pressure
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Phonons — Harmonic approximation

Eo
harmonic oscillator: R
1 0?E(R
Eo(R) = Ep(Ro) + 5 afo{(Q ) (R — Ry)°
R . .
\ 0, vibrational
L /frequency

atomic mass =~
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Hesslan matrix

02 E,
OR,;0R,;

(I),,;j —

[

Hessian matrix (or atomic force constants)

Can be calculated with density-functional
perturbation theory (DFPT).

9 Aalto University .
A @ Schoolof Sclence S. Baroni, et al., Rev. Mod. Phys. 73, 515 (2001)



Hesslan matrix

H.. — 0" Eo _ % F,NFj(R?+€di)
fzj 8R18R3 8Rz / €

Hessian matrix (or atomic force constants)

Or it can be calculated with DFT and finite
differences.

School of Science

A? Aalto University K, Kunc, and R. M. Martin, Phys. Rev. Lett. 48, 406 (1982)
] K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997)



Hesslan matrix

82E0 0 Fj (R,(L) + Edz)

(I)i' — — F. ~
fj 8R18R3 8RZ 7 €

Hessian matrix (or atomic force constants)

Or it can be calculated with DFT and finite
differences.

For example with the phonopy code.

A Aalto University
School of Science
O A.Togo, F. Oba, and I.Tanaka, Phys. Rev. B 78, 134106 (2008)



Hessian matrix — molecules vs solids

A2 1 A  nEA » X0 i A

But N goes to infinity...

v J v

molecules | solids |
OowO MWOWOW O

number of atoms \ number of atoms \
degrees of freedom : 3N degrees of freedom : 3N
dimension of Hessian : 9N? dimension of Hessian : 9N-?
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Periodic boundary conditions

periodic Images periodic Images

OPOMPOIPIOIGONG

[

unit cell with Np atoms
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Periodic boundary conditions

periodic images unit cell - Np atoms periodic images

OPOPOIPIOGUONG

real-space reciprocal-space

Hessian ®;; dynamical matrix nyj/(q)

1,7 — OC _
Fourier transform

( (RO— RO,))

=3 i

J

D,

9 Aalto University
A School of Science K, Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997)



Periodic boundary conditions

real-space reciprocal-space

(Q(RO RO/ ))

=3 i

J

D,

Fourier transform can be truncated since

0) 0)
®,;; =0 forlarge ‘Rj — Rj,

Hessian ®;; dynamical matrix Dy 5/ (q)
with finite for whole reciprocal space
number of entries

9 Aalto University
A School of Science K, Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997)



Phonon band structure

OPOMPIOIPIOIPUONG

phonon frequencies

Eigenvalue problem: D(q)l/(q)>ﬂ'2(Q)V(Q)

[

phonon modes
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Phonon band structure

OPOMPOIPIOIPONG

®(Q) N, =2, Dimensionality = 1
DoF = 2*1 ,
D(q)v(q) = w*(q)v(q)
7

Dependency on where we
are in the reciprocal space

How these modes look like?
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Phonon band structure

> == = = == ==}

OO PUOIPIOIPONG

o) = = = = =) =) = w= =

D(q)v(q) = w?(q)v(q)

. E EB 0_po ; ) =1
€ S
Di' ./ (q) — (I)?;/ .
g Zj: My My




Phonon band structure
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Phonon band structure — back in 3D

- = = = === =
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3 acoustic modes

 atoms in unit cell in phase
 vanish at'

acoustic | e« strong linear dispersion at I

optical




Phonon band structure — back in 3D

- = = = === =

PP RSP WS IPISNC

() = == b e = =) = o

3Np-3 optical modes

« atoms In unit cell out of phase
* frequency always >0

acoustic | * weak dispersion

optical




Phonon band structure — back in 3D

E
=2
o
2
G
HfS, =1
3 acoustic modes v
atoms in unit cell in phase L
vanish at I
strong linear dispersion at I' -
3Np-3 optical modes Wavevector

atoms in unit cell out of phase
frequency always >0
weak dispersion

Aalto Univers_ity
A s J. Ibafiez et al. Sci Rep 8, 12757, (2018)



Questions?

Interesting links:
FHI-vibes: different types of vibrations and phonon calculations
https://vibes-developers.qgitlab.io/vibes/

All your FHI-aims calculations and preparing workflows on one website:
https://gims.ms1p.org/static/index.html

Building a molecule/monocrystalic structure/monocrystalic surface through
python (Atomic Simulation Environment):
https://wiki.fysik.dtu.dk/ase/ase/build/build.html
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