Density-Functional Theory for Practitioners - Lecture 4

Orlando Silveira Júnior, Adolfo Otero Fumega and Ondřej Krejcí,
(Developed by Patrick Rinke and Milica Todorović)
Aalto University
School of Science
Department of Applied Physics

Revision

At your table, reflect on last week's lecture and tutorial:
-What did you learn about solids?

- What did you find difficult or easy in running the calculations?
- How did the calculations help you understand DFT better?
Must know
Crystal structures

Cohesive energy

Phonons

Principles of bonding

Should know

Primitive unit cell
Bulk-phase diagram

Phonon dispersion

Different bonding types

Nice to know

Brillouin zone
Murnaghan fit

Dynamical matrix

Bond formation

Learning outcomes

After completion of this class you

- are familiar with crystal structures and their unit cells.
- know how to calculate cohesive properties of solids.
- know how to calculate phonons with DFT.

Last time in this very place

Bravais lattice

Bravais lattice: space-filling lattice of the type
$\mathbf{R}=n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}$

Bravais lattices in 2D

square

a_{1}
$\left|\mathbf{a}_{1}\right|=\left|\mathbf{a}_{2}\right|, \varphi=90^{\circ}$

Bravais lattices in 2D

square

rectangular

a1

$$
\left|\mathbf{a}_{1}\right|=\left|\mathbf{a}_{2}\right|, \varphi=90^{\circ}
$$

Bravais lattices in 2D

square

a_{1}
$\left|\mathrm{a}_{1}\right|=\left|\mathrm{a}_{2}\right|, \varphi=90^{\circ}$
rectangular

a1

$\left|\mathbf{a}_{1}\right| \neq\left|\mathbf{a}_{2}\right|, \varphi=90^{\circ}$

oblique

a_{1}
$\left|a_{1}\right| \neq\left|a_{2}\right|, \varphi \neq 90^{\circ}$

Bravais lattices in 2D

centered rectangular

$\left|\mathbf{a}_{1}\right| \neq\left|\mathbf{a}_{2}\right|, \varphi \neq 90^{\circ}$

Bravais lattices in 2D

centered rectangular

hexagonal

$\left|\mathbf{a}_{1}\right| \neq\left|\mathbf{a}_{2}\right|, \varphi \neq 90^{\circ}$

Bravais lattices in 3D

simple cubic

body-centered

simple tetragonal
body-centered tetragonal

face-centered

base-centered orthorhombic

simple
monoclinic

rhombohedral

hexagonal hcp

simple orthorhombic orthorhombic

face-centered orthorhombic

base-centered monoclinic

triclinic

In 3D there are 14 different lattices.

Fractional coordinates

lattice vectors:

$$
\begin{aligned}
& a_{1}=a\left(\frac{3}{2},+\frac{\sqrt{3}}{2}\right) \\
& a_{1}=a\left(\frac{3}{2},-\frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

Fractional coordinates

lattice vectors:

$$
\begin{aligned}
& \boldsymbol{a}_{\mathbf{1}}=\boldsymbol{a}\left(\frac{3}{2},+\frac{\sqrt{3}}{2}\right) \\
& \boldsymbol{a}_{\mathbf{1}}=\boldsymbol{a}\left(\frac{3}{2},-\frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

Basis (cartesian):

$$
\begin{aligned}
& \boldsymbol{R}_{\boldsymbol{a}}=(0,0) \\
& \boldsymbol{R}_{\boldsymbol{b}}=\boldsymbol{a}(2,0)
\end{aligned}
$$

Basis (fractional):

$$
\begin{aligned}
& \boldsymbol{R}_{\boldsymbol{a}}=(0,0) \\
& \boldsymbol{R}_{\boldsymbol{b}}=\frac{2}{3}\left(\boldsymbol{a}_{1}+\boldsymbol{a}_{2}\right)=\left(\frac{2}{3}, \frac{2}{3}\right)
\end{aligned}
$$

Fractional coordinates

Fractional coordinates are atomic coordinates that are given in terms of the basis vectors.

Basis (fractional):

$$
\begin{aligned}
& \boldsymbol{R}_{\boldsymbol{a}}=(0,0) \\
& \boldsymbol{R}_{\boldsymbol{b}}=\frac{2}{3}\left(\boldsymbol{a}_{1}+\boldsymbol{a}_{2}\right) \\
& =\left(\frac{2}{3}, \frac{2}{3}\right)
\end{aligned}
$$

Fractional coordinates in 3D

lattice vectors:

$$
\begin{aligned}
& \mathbf{a}_{1}=a / 2(0,1,1) \\
& \mathbf{a}_{2}=a / 2(1,0,1) \\
& \mathbf{a}_{3}=a / 2(1,1,0)
\end{aligned}
$$

face-centered cubic
fcc/ccp
basis (Fractional):

$$
\begin{aligned}
& \mathbf{R}_{A}=(0,0,0) \\
& \mathbf{R}_{B}=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)
\end{aligned}
$$

Silicon in the
diamond structure
basis (Cartesian):

$$
\begin{aligned}
& \mathbf{R}_{A}=(0,0,0) \\
& \mathbf{R}_{B}=a / 4(1,1,1)
\end{aligned}
$$

Cohesive energy of solids

Cohesive energy vs volume curve

In solids it is convenient to plot $\mathrm{E}_{\text {coh }}$ versus volume.

Cohesive energy vs volume curve

Quadratic approximation (later useful for phonons)

Birch-Murnaghan equation of state

The bulk modulus of a substance measures the substance's resistance to uniform compression.

Vo bulk modulus derivative

$$
\begin{aligned}
& \text { bulk modulus } B_{0} V \\
& \left.\qquad E(V)=E_{0}+\frac{\left(V_{0} / V\right)^{B_{0}^{\prime}}}{B_{0}^{\prime}}+1\right]-\frac{B_{0} V_{0}}{B_{0}^{\prime}-1}
\end{aligned}
$$

A?
F. D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944)
F. Birch, Phys. Rev. 71, 809 (1947)

Simple phase diagrams

Cohesive energy

phase 1

Volume

Simple phase diagrams

Cohesive energy

pressure

$$
p=\frac{\partial E}{\partial V}
$$

phase 1

Volume

Simple phase diagrams

pressure

$$
p=\frac{\partial E}{\partial V}
$$

phase 1

- The slope of $\mathrm{E}_{\text {coh }}$ gives the pressure.
- Two phases are in equilibrium when $p_{1}=p_{2}$.

Simple phase diagrams

Volume

Simple phase diagrams

phase 2
phase 1

pressure

Questions on phases?

phase 2
 phase 1
 pressure

Phonons - Harmonic approximation

harmonic oscillator:
R

$$
E_{0}(\mathbf{R})=E_{0}\left(\mathbf{R}_{0}\right)+\frac{1}{2} \underbrace{\left.\frac{\partial^{2} E_{0}(\mathbf{R})}{\partial \mathbf{R}^{2}}\right|_{\mathbf{R}_{0}}}_{k}\left(\mathbf{R}-\mathbf{R}_{0}\right)^{2} \text { vibrational } \begin{gathered}
\text { frequency }
\end{gathered}
$$

atomic mass

Hessian matrix

$$
\Phi_{i j}=\frac{\partial^{2} E_{0}}{\partial \mathbf{R}_{i} \partial \mathbf{R}_{j}}
$$

1

Hessian matrix (or atomic force constants)

Can be calculated with density-functional perturbation theory (DFPT).

Hessian matrix

$$
\Phi_{i j}=\frac{\partial^{2} E_{0}}{\partial \mathbf{R}_{i} \partial \mathbf{R}_{j}}=-\frac{\partial}{\partial \mathbf{R}_{i}} \mathbf{F}_{j} \approx \frac{\mathbf{F}_{j}\left(\mathbf{R}_{i}^{0}+\epsilon \mathbf{d}_{i}\right)}{\epsilon}
$$

Hessian matrix (or atomic force constants)

Or it can be calculated with DFT and finite differences.

K. Kunc, and R. M. Martin, Phys. Rev. Lett. 48, 406 (1982)
K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997)

Hessian matrix

$$
\Phi_{i j}=\frac{\partial^{2} E_{0}}{\partial \mathbf{R}_{i} \partial \mathbf{R}_{j}}=-\frac{\partial}{\partial \mathbf{R}_{i}} \mathbf{F}_{j} \approx \frac{\mathbf{F}_{j}\left(\mathbf{R}_{i}^{0}+\epsilon \mathbf{d}_{i}\right)}{\epsilon}
$$

Hessian matrix (or atomic force constants)

Or it can be calculated with DFT and finite differences.

For example with the phonopy code.

Hessian matrix - molecules vs solids

22m

But N goes to infinity...

molecules

solids

number of atoms : \boldsymbol{N} number of atoms : \boldsymbol{N}
degrees of freedom : 3 N
dimension of Hessian: 9N²
degrees of freedom : 3 N
dimension of Hessian: 9N ${ }^{2}$

A?
School of Science

Periodic boundary conditions

 periodic imagesperiodic images

1
unit cell with N_{p} atoms

Periodic boundary conditions

 periodic images unit cell- $\boldsymbol{N}_{\boldsymbol{p}}$ atoms periodic images
mand

real-space

reciprocal-space

Hessian $\Phi_{i j}$
dynamical matrix $D_{i^{\prime} j^{\prime}}(\mathbf{q})$

$$
\begin{aligned}
& i, j \rightarrow \infty \text { Fourier transform } \\
& D_{i^{\prime} j^{\prime}}(\mathbf{q})=\sum_{j} \frac{e^{i\left(\mathbf{q}\left(\mathbf{R}_{j}^{0}-\mathbf{R}_{j^{\prime}}^{0}\right)\right)}}{\sqrt{M_{i^{\prime}} M_{j^{\prime}}}} \Phi_{i^{\prime} j}
\end{aligned}
$$

Periodic boundary conditions

real-space

reciprocal-space

$$
D_{i^{\prime} j^{\prime}}(\mathbf{q})=\sum_{j} \frac{e^{i\left(\mathbf{q}\left(\mathbf{R}_{j}^{0}-\mathbf{R}_{j^{\prime}}^{0}\right)\right)}}{\sqrt{M_{i^{\prime}} M_{j^{\prime}}}} \Phi_{i^{\prime} j}
$$

Fourier transform can be truncated since

$$
\Phi_{i j}=0 \quad \text { for large }\left|\mathbf{R}_{j}^{0}-\mathbf{R}_{j^{\prime}}^{0}\right|
$$

Hessian $\Phi_{i j}$ with finite

number of entries

A?
dynamical matrix $D_{i^{\prime} j^{\prime}}(\mathbf{q})$ for whole reciprocal space

Phonon band structure

phonon frequencies
Eigenvalue problem:
$\mathbf{D}(\mathbf{q}) \nu(\mathbf{q})=\omega^{2}(\mathbf{q}) \nu(\mathbf{q})$
phonon modes

Phonon band structure

monn
 ungurom

$\omega(\boldsymbol{q}) \quad \mathrm{N}_{\mathrm{p}}=2$, Dimensionality $=1$

$\xrightarrow{\sim}$

$$
\begin{aligned}
& \quad \mathbf{D}(\mathbf{q}) \nu(\mathbf{q})=\omega^{2}(\mathbf{q}) \nu(\mathbf{q}) \\
& \text { Dependency on where we } \\
& \text { are in the reciprocal space }
\end{aligned}
$$

How these modes look like?

A?
Aalto University
School of Science
Phonon band structure

$$
\mathbf{D}(\mathbf{q}) \nu(\mathbf{q})=\omega^{2}(\mathbf{q}) \nu(\mathbf{q})
$$

A?
Aalto University
School of Science

Phonon band structure

$$
\mathbf{D}(\mathbf{q}) \nu(\mathbf{q})=\omega^{2}(\mathbf{q}) \nu(\mathbf{q})
$$

$$
D_{i^{\prime} j^{\prime}}(\mathbf{q})=\sum_{j} \frac{e^{i\left(\mathbf{q}\left(\mathbf{R}_{j}^{0}-\mathbf{R}_{j^{\prime}}^{0}\right)\right)}}{\sqrt{M_{i^{\prime}} M_{j^{\prime}}}} \Phi_{i^{\prime} j}
$$

Phonon band structure - back in 3D

- atoms in unit cell out of phase
- frequency always >0
- weak dispersion

Questions?

Interesting links:
FHI-vibes: different types of vibrations and phonon calculations
https://vibes-developers.gitlab.io/vibes/
All your FHI -aims calculations and preparing workflows on one website: https://gims.ms1p.org/static/index.html

Building a molecule/monocrystalic structure/monocrystalic surface through python (Atomic Simulation Environment):
https://wiki.fysik.dtu.dk/ase/ase/build/build.html

