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• Gaussian pdf, mean and covariance

• Stochastic sequences, Markov property

• Discrete-time linear stochastic dynamic systems 
Prediction, propagation of mean and covariance

• Continuous-time linear stochastic dynamic systems 
Propagation of mean and covariance

LINEAR DYNAMIC SYSTEMS WITH RANDOM INPUTS 
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Gaussian pdf, mean and covariance

• Scalar Gaussian or Normal pdf

• Vector Gaussian pdf

• Mean or expected value

• Covariance P
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Stochastic sequences, Markov property
• Markov process and property

• Random Sequences, Markov 

Sequences
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Markov property continues
discrete-time white noise (a white 

sequence) scalar

The state of linear dynamic 
equation with white noise 
process

has the following analytical 
solution, next slide
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The State as a Markov Process

Thus, since v(i), i = l, . . . , k − 1, are independent of

which depend only on v(i), i = 0, . . . , l − 1, one has

Thus, the state vector is a Markov process, or, more correctly, a Markov

sequence.

State of a stochastic system described by a Markov process — summarizes

probabilistically its past.
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Discrete-time linear stochastic dynamic 

systems - prediction

with the known input u(k) and the process noise v(k) white, but for the sake

of generality, nonstationary with nonzero mean:

Then the expected value of the state

evolves according to the difference equation

The above, which is the propagation equation of the mean, follows

immediately by applying the expectation operator to (4.3.4-1)
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Propagation of covariance

The covariance of the state

evolves according to the difference equation — the covariance propagation

Equation

This follows by subtracting (4.3.4-5) from (4.3.4-1), which yields

It can be easily shown that multiplying (4.3.4-8) with its transpose and taking

the expectation yields (4.3.4-7).



Continuous-time linear stochastic 

dynamic systems – for comparison
The Continuous-Time State-Space Model

In the stochastic case, the noises are usually assumed to be

1. zero-mean,

2. white, and

3. mutually independent

stochastic processes.
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Propagation of the State’s Mean and 

Covariance
• The state of a dynamic system driven by white noise is a Markov 

process

Let’s assume  known input u(t) and nonstationary white

process noise with nonzero mean

and autocovariance function

The expected value of the state

The propagation equation of the mean follows from taking the

expected value of continuous state space equation.
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The covariance of the state

evolves according to the differential equation, known as the Lyapunov

equation

This is the propagation equation of the covariance
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The estimation of the state vector of a stochastic linear 
dynamic system is considered.

The state estimator for discrete-time linear dynamic systems 
driven by white noise — the (discrete-time) Kalman filter —
is introduced. 

Estimation of Gaussian random vectors. 

STATE ESTIMATION IN DISCRETE TIME LINEAR 

DYNAMIC SYSTEMS
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For linear systems, white noise Gaussian processes

Linear equations used for state prediction,  prediction of the 
measurement and for measurement update.

Exact propagation and measurement  update equations for a priori 
and a posteriori covariances

All pdfs stay exactly Gaussian, no need for approximations

Kalman Filter 
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Prediction, propagation of covariance, with 
linear dynamic models with white noise 

Measurement update, direct application of 
fundamental equations of linear estimation

Reasoning of Kalman filter 
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Estimation of Gaussian random vectors

x and z jointly Gaussian z is the measurement x random variable to be 

estimated

The MMSE Minimum Mean Square Error -estimator, conditional 
mean of x given z, for linear Gaussian case also Maximum a 
Posteriori MAP -estimator
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Fundamental equations of linear 

estimation - Interpretations
• A priori estimate is updated/corrected  on the basis of measurement 

information in calculation of a posteriori estimate

• Correction gain depends directly on Pxz the crosscovariance between x and 

measurement z. 

• Correction effect depends inversely proportional on Pzz . The better 

measurements, the ’smaller’ covariance, the bigger the correction gain.



The Dynamic Estimation Problem

v(k), k = 0, 1, . . . , is the sequence of zero-mean white Gaussian process 

noise  with covariance

with w(k) the sequence of zero-mean white Gaussian measurement noise

with covariance

the linear Gaussian (LG) assumption. The linearity leads to the preservation 

of the Gaussian property of the state and measurements — this is a Gauss-

Markov process
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The conditional mean

Estimate of the state if  j = k (also called filtered value)

Smoothed value of the state if  j < k

Predicted value of the state if  j > k

The estimation error is defined as

The conditional covariance matrix of x(j) given the data  or the

covariance associated with the estimate  is

MMSE criterion for estimation leads to the conditional mean as the 

optimal estimate
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The Estimation Algorithm
The estimation algorithm starts with the initial estimate and

the associated initial covariance P(0|0), assumed to be available.

One cycle of the dynamic estimation algorithm — the Kalman filter

(KF) — will thus consist of mapping the estimate

and the associated covariance matrix

into the corresponding variables at the next stage

Gaussian random variable is fully characterized by its first two 

moments
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Dynamic Estimation as a Recursive 

Static Estimation
the state estimate at k + 1 and its covariance can be obtained from the 

static estimation equations

The prior (unconditional) expectations from the static case become 

prior to the availability of the measurement at time k + 1 in the 

dynamic case, that is, given the data up to and including k.

The posterior (conditional) expectations become posterior to 

obtaining the measurement at time k + 1, that is, given the data up 

to and including k + 1.
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Measurement update, direct application of 

fundamental equations of linear estimation

• The prior (unconditional) expectations from the static case become prior to 

the availability of the measurement at time k + 1 in the dynamic case, that 

is, given the data up to and including k.

• The posterior (conditional) expectations become posterior to obtaining the 

measurement at time k + 1, that is, given the data up to and including k + 1.

• The variable to be estimated is the state at k + 1

• Its mean prior to k + 1 — the (one-step) predicted state — is 
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Measurement update, …
Based on the observation (measurement)

with prior mean — the predicted measurement

one computes the estimate posterior to k+1 — the updated state estimate

The Covariances

• The prior covariance matrix of the state variable x(k + 1) to be estimated —

the state prediction covariance or predicted state covariance — is
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Measurement update, covariances

• The (prior) covariance of the observation z(k + 1) — the measurement 

prediction covariance — is

• The covariance between the variable to be estimated x(k + 1) and the 

observation z(k + 1) is

• The posterior covariance of the state x(k + 1) — the updated state 

covariance — is
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In Kalman filter: a priori estimate by 

prediction
• mean prior to k + 1 — the (one-step) predicted state — is 

• The corresponding covariance 
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In Kalman filter: Measurement update
• With prior mean — the predicted measurement

• The corresponding covariance
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Measurement update
• one computes the estimate posterior to k+1 — the updated state estimate
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In Kalman filter: Measurement update, 

covariances
• The corresponding covariance
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Kalman filter



Intuitive Interpretation of the Gain

the optimal filter gain is

1. “Proportional” to the state prediction variance

2. “Inversely proportional” to the innovation variance

Thus, the gain is

• “Large” if the state prediction is “inaccurate” (has a large variance) and 

the measurement is “accurate” (has a relatively small variance)

• “Small” if the state prediction is “accurate” (has a small variance) and 

the measurement is “inaccurate” (has a relatively large variance)

A large gain indicates a “rapid” response to the measurement in updating 

the state, while a small gain yields a slower response to the measurement.
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Overview of the Kalman Filter Algorithm
• Under the Gaussian assumption for the initial state (or initial state 

error) and all the noises entering into the system, the Kalman filter 

is the optimal MMSE state estimator

• If these random variables are not Gaussian and one has only 

their first two moments, then, the Kalman filter algorithm is the best 

linear state estimator, that is, the LMMSE state estimator

• Note that at every stage (cycle) k the entire past is summarized by 

the sufficient statistic              and the associated covariance P(k|k).

• The state update requires the filter gain, obtained in the course of

the covariance calculations. The covariance calculations are 

independent of the state and measurements (and control —

assumed to be known) and can, therefore, be performed offline.

• Statistical assumptions: The initial state has the known mean and 

covariance. The process and measurement noise sequences are 

zero mean and white with known covariance matrices. All the 

above are mutually uncorrelated
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Kalman filter with single-argument notations



The Matrix Riccati Equation
The covariance equations in the static MMSE estimation problem are 

independent of the measurements

the following recursion can be written for the one-step prediction 

covariance

This is the discrete-time (difference) matrix Riccati equation, or just the 

Riccati equation.

The solution of the above Riccati equation for a time-invariant system 

converges to a finite steady-state covariance if  the pair {F,H} is 

completely observable. 
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The steady-state gain for the Kalman filter

The steady-state covariance matrix is the solution of the algebraic 

matrix Riccati equation (or just the algebraic Riccati equation)

and this yields the steady-state gain for the Kalman filter.

Stability: The convergence of the covariance to a finite steady state —

that is, the error becoming a stationary process in the MS sense — is 

equivalent to filter stability in the bounded input bounded output sense.

CRLB: The lower bound on the minimum achievable covariance in 

state estimation is given by the (posterior) CRLB.  In the linear 

Gaussian case it can be shown that this is given by the solution of the 

Riccati equation.
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The Innovations — a Zero-Mean White 

Sequence
An important property of the innovation sequence is that it is an 

orthogonal sequence, that is

the innovation sequence is zero mean and white.

In fault sitations, the dynamics of the real systems does not anymore 

behave as described with the dynamic model and the measurement 

model in the Kalman filter, the innovation sequence becomes then 

non-white. 

Fault situations can be detected by testing the whiteness of the 

innovation sequence of the Kalman filter.
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