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Problem 1.  Consider the mass/spring/damper system shown in the figure.  The 
control forces are F1 and F2.  Parameter values:  k1=1, k2=4, b1=0.2, b2=0.1, m1=1, 
m2=2. 
 

a. Form a differential model of the system. 
b. Form a state-space representation of the system. 
c.  Plot the singular values as functions of frequency (Matlab). 
d. Calculate the H∞-norm (Matlab). 
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Solution:  
 

a.    By applying Newton’s 2. law 
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b. Choose the state variables 11 yx = , 22 yx = , 13 yx = ,  24 yx =  so that 
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The state-space representation is 
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When using Matlab also the D matrix must be given (with correct 
dimensions). 
 

c. In Matlab the command sigma(A,B,C,D) gives the figure 
 

 
d. The calculation of the H∞-norm of the transfer function is a difficult task (and 

no theoretical background for it has been given during the course either).  Use 
the commands of the Robust Control Toolbox in Matlab (it is related to robust 
control theory, but the toolbox can be utilized in other purposes also). 

 
1. G = pck(A,B,C,D); form the system matrix. The transfer function (or matrix of the 

transfer functions) can be also defined using ss(A,B,C,D) or tf(A,B,C,D). 
2.  hinfnorm(G,0.001); - calculate an approximation to the norm; tolerance 
(accuracy)   0.001  
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The result is between 11.47 and 11.48  at the angular frequency 0.848.  Note that in 
the figure the singular values are in dB-units. 
 

 
 
Problem 2.  (Matlab)  Consider the transfer function matrix 
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Determine a realization and plot the singular values. 
 
Solution: 
 
Calculate the transfer function matrix by using Matlab 
 
g11=10*tf([1 1],[1 0.2 100]); 
g12=tf(1,[1 1]); 
g21=tf([1 2],[1 0.1 10]); 
g22=5*tf([1 1],conv([1 2],[1 3])); 
G=[g11 g12;g21 g22]; 
 
Change into the state-space form 
 
Gss=ss(G); 
 
Form the minimal realization i.e. the representation with a minimal number of state 
variables that generates the same input-output behaviour. 
 
Gssm=minreal(ss(G)); 
 
Look at the matrices of the representation 
 
[A,B,C,D]=ssdata(Gss); 
[Am,Bm,Cm,Dm]=ssdata(Gssm); 
 
We note that the first state-space representation was in fact the minimal realization (A 
= Am  etc.) 
 
Plot the largest and smallest singular value 
sigma(A,B,C,D) 



  
 
 
 
Problem 3.  Two systems are given by the two transfer function matrices below.  
Calculate the poles and zeros 
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Solution:   
 

System 1:  Minors 
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The pole polynomial  )4)(3)(1()( +++= sssssp , from which the poles 

4,3,1,0 −=−=−== ssss .  (All poles are single, so that the minimal realization has 
four states). 
 
The “largest” minors (here the only ones have the degree 1.  Arrange the pole 
polynomial to the denominator 
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The zero polynomial is 2)( += ssz , so that the zero is 2−=s . 
But what about Matlab.  Let us try 
 



G1=[tf([2 6 4],[1 7 12 0]),tf([1 2],[1 4 3])]; 
pole(G1) 
 
ans = 
 
     0 
    -4 
    -3 
    -3 
    -1 
 
One pole appears twice.  Try the minimal realization 
 
pole(minreal(G1)) 
 
ans = 
 
     0 
    -4 
    -3 
    -3 
    -1 
 
Same results.  But programs are only programs!  Form first a state-space realization, 
and from it the minimal realization 
 
G1ss=minreal(ss(G1)) 
1 state(s) removed. 
  
Now the extra state disappeared 
 
a =  
                        x1           x2           x3           x4 
           x1      -3.0047      0.33629     -0.35451     -0.57787 
           x2       2.6142     -0.31631     -0.18814      0.39683 
           x3       2.4213     -0.47446      -4.2822     -0.90475 
           x4      -1.6142      0.31631       2.1881     -0.39683 
  
  
b =  
                        u1           u2 
           x1      -1.4021      0.16105 
           x2      0.46736    -0.053685 
           x3      0.70105      0.91947 
           x4     -0.46736     0.053685 
  
  
c =  
                        x1           x2           x3           x4 
           y1      -1.2095     -0.34684       1.2297      0.84684 



  
  
d =  
                        u1           u2 
           y1            0            0 
  
Continuous-time model. 
pole(G1ss) 
 
ans = 
 
   -3.0000 
   -4.0000 
   -0.0000 
   -1.0000 
 
The result is correct.  The Matlab command tzero(G1)  (transmission zero) gives the 
zero  –2, as desired. 
 
 
System 2:  Minors 
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Pole polynomial )3()2)(1()( 2 +−+= ssssp , poles 3,2,1 −−=s . 
The pole 2 has the degree 2; the minimal realization has four states. 
 
Zeros:  the largest minor has the dimension 2.  Arrange again the pole polynomial to 
the denominator 
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Zeros  -15.07, -0.93  (both have the degree one).  Confirm with Matlab. 
 
 
Problem 4.  By considering the static system 
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prove that eigenvalues do not give a reliable view about the gain of a multivariable 
system.  What is a better alternative? 
 



Solution:  The eigenvalues of the matrix are both zero.  However, the input 
[ ]Tu 10= gives the output [ ]Ty 0100= .  So, at least in this input direction the 

eigenvalue  0 does not describe the system well.  The problem is that generally 
eigenvalues describe the gain only in the direction of the eigenvector.  Let ( )ii t,λ  be 
the eigenvalue-eigenvector pair related to the matrix G.  For the eigenvector as input 
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But let us calculate the singular values. 
 
By the Matlab command svd(G) or by calculating directly sqrt(eig(G’*G))  the 
singular values 100 and 0 are obtained.  The gain of the system is between these 
values, and the maximum gain (corresponding to the infinity norm of the transfer 
function) is 100. 
 

Note.  The singular values are obtained as )()( GGG H
ii λσ = ; the eigenvalues here 

are always real, because GG H  is a hermitian matrix.  Also GG H  is positive 
semidefinite, so that the eigenvalues are nonnegative. 
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