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R packages
If there is some functionality that is not implemented in base R there is most probably a package for it. You
can install packages with the function install.packages. Note that the package name has to be given as a
character string for the function install.packages. For example, the package car that is required for this
exercise session can be installed with the following line of code.
install.packages("car")

Once the package is installed you can use functionality inside the package by specifying the correct namespace
and using double colon :: between the namespace and the function. Below we use the function vif from
the package car.
data <- read.table("data/hald.txt", header = TRUE, sep = "\t")
car::vif(lm(HEAT ~ . - SUM, data = data))

## CHEM1 CHEM2 CHEM3 CHEM4
## 38.49621 254.42317 46.86839 282.51286

Namespaces are a useful concept since there can be functions with the same name in different packages. For
example function lag can be found at least in two different packages.
?stats::lag
?dplyr::lag

Instead of specifying the namespace one can attach the package with the function library. For an example,
see following lines of code.
library(car)
data <- read.table("data/hald.txt", header = TRUE, sep = "\t")
# No reference to namespace
vif(lm(HEAT ~ . - SUM, data = data))

## CHEM1 CHEM2 CHEM3 CHEM4
## 38.49621 254.42317 46.86839 282.51286

If you decide to attach packages it is a good practice to put library commands at the top of your script,
instead of scattering them all around.

Some useful packages
A bundle of packages called tidyverse provides many useful packages for data science. For example, tidyverse
includes below packages among others.

• ggplot2 – Produce quality figures.

• purrr – Replaces R base solutions for functional programming.

• tibble – Enhances the common data type data.frame.

Homepage of tidyverse: https://www.tidyverse.org/
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Demo exercises
2.1
This exercise is continuation of the homework.

a) Generate a scatter plot (CONSUMPTION, ILL). Add the estimated regression line to the figure.

b) Determine the fitted values ̂𝑦 and estimated residuals 𝑒 from the corresponding model and assign them
to variables fit and res, respectively.

c) Generate scatter plots (ILL, fit) and (fit, res).

d) Study whether the observation 7 = USA is an outlier by using the plots of part c).

e) Study whether the observation 7 = USA is an outlier by using Cook’s distances.

f) Estimate the model without the observation 7 = USA. Compare the results with the homework assign-
ment of the previous week.

Solution
First we read the data. We can remove redundant variables.
smoking <- read.table("data/tobacco.txt", header = TRUE, sep = "\t",

row.names = "COUNTRY")
smoking <- smoking[, c("CONSUMPTION", "ILL")]
str(smoking)

## 'data.frame': 11 obs. of 2 variables:
## $ CONSUMPTION: int 220 250 310 510 380 455 1280 460 530 1115 ...
## $ ILL : int 58 90 115 150 165 170 190 245 250 350 ...

Then estimate the linear regression model.
model <- lm(ILL ~ CONSUMPTION, data = smoking)

a)

Scatter plot with regression line is showed in Figure 1.
# Country labels
countries <- c("Iceland", "Norway", "Sweden", "Canada", "Denmark", "Austria",

"USA", "Netherlands", "Switzerland", "Finland", "England")

# Plotting
plot(smoking$CONSUMPTION, smoking$ILL,

ylab = "Cases in 1950",
xlab = "CONSUMPTION in 1930",
main = "CONSUMPTION/ILL per 100 000 individuals",
pch = 16, cex = 1.5, col = "midnightblue",
xlim = c(0, max(smoking$CONSUMPTION)),
ylim = c(min(smoking$ILL), max(smoking$ILL) + 50))

abline(model, lty = 2, lwd = 2)

# Add labels for points
text(smoking$CONSUMPTION, smoking$ILL, labels = countries, cex = 0.5,

pos = 3)
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Figure 1: Estimated regression line and scatter plot of the variables.

b)

Remember that model is a S3 object of class lm (essentially, a named list). There are multiple object oriented
systems in R, S3 system being one of them.
names(model)

## [1] "coefficients" "residuals" "effects" "rank"
## [5] "fitted.values" "assign" "qr" "df.residual"
## [9] "xlevels" "call" "terms" "model"
fit <- model$fitted.values
res <- model$residuals

c)

Figure 2 shows scatter plot where fitted values ̂𝑦𝑖 are plotted against observed values ILL𝑖.
plot(smoking$ILL, fit, pch = 21, bg = "skyblue", cex = 1.5, ylab = "Fits",

xlab = "Sick")
abline(a = 0, b = 1, col = "grey")

# label USA with ifelse function
text(smoking$ILL, fit, labels = ifelse(countries == "USA", "USA", NA), pos = 1)
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Figure 2: Scatter plot (ILL, fit).

Coefficient of determination R2 is equal to the squared Pearson correlation coefficient between observed
values ILL𝑖 and fitted values ̂𝑦𝑖.
cor(smoking$ILL, fit)^2

## [1] 0.54904
summary(model)$r.squared

## [1] 0.54904

The scatter plot in Figure 2 illustrates the goodness of the fit:

• The closer the points (ILL𝑖, ̂𝑦𝑖), 𝑖 = 1, 2, … , 𝑛 are to the line 𝑓(𝑥) = 𝑥, the better the model is.

• Outliers are usually visible (see USA).

• Nonlinear shapes indicate that the functional form of the model part is not well selected.

Figure 3 shows scatter plot where fitted values ̂𝑦𝑖 are plotted against residuals 𝑒𝑖.
plot(fit, res, pch = 21, bg = "skyblue", cex = 1.5,

xlab = "Fits", ylab = "Residuals")
abline(h = 0, col = "grey")

# Another way to label USA
text(fit[7], res[7], labels = "USA", pos = 3)
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Figure 3: Scatter plot (fit, res).

The scatter plot in Figure 3 illustrates the goodness of the model:

• The closer the points ( ̂𝑦𝑖, 𝑒𝑖), 𝑖 = 1, 2, … , 𝑛 are to the line 𝑓(𝑥) = 0, the better the model is.

• Outliers are usually visible (see USA).

• Nonlinear shapes indicate that the functional form of the model part is not well selected.

• If the height of the scatter plot is not approximately the same everywhere, the residuals might be
heteroscedastic.

d)

Figures 2 and 3 suggest that the observation USA is an outlier.

e)

Figure 4 shows Cook’s distance for each observation. Also, according to Cook’s distances observation USA is
an outlier.
cooksd <- cooks.distance(model)

# xaxt = "n" => No ticks at x-axis
# type = "h" => Plot vertical lines instead of points
plot(cooksd, xaxt = "n", type = "h", lwd = 3, xlab = NA,

ylab = "Cook's distances")
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# side = 1 => Modify x-axis (bottom axis)
# at = 1:11 => Add tick marks to places 1:11
# las = 2 => Rotate text 90 degrees
# cex.axis = 0.9 => Smaller x-axis labels
axis(side = 1, at = 1:11, labels = countries, las = 2, cex.axis = 0.9)
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Figure 4: Cook’s distance for each country.

f)

Contextual explanation for the outlyingness of the observation USA is that during the corresponding time
period, tobacco was milder in the USA, when compared to the other countries of the study. Furthermore,
cigarettes sold in the USA had filters, whereas the cigarettes sold in the other countries did not have filters.

For this reason it is appropriate to analyze observation USA separately. In our case, this means that we
estimate linear regression models with and without the observation USA. However, there exists more sophis-
ticated ways to handle outliers, for example, models that are separated in two parts and robust estimation
methods. Remember that one may not just remove data points that are unpleasant.

Next, let us estimate linear regression model without the observation USA.
smoking2 <- smoking[-7, ]
model2 <- lm(ILL ~ CONSUMPTION, data = smoking2)

summary(model)

##
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## Call:
## lm(formula = ILL ~ CONSUMPTION, data = smoking)
##
## Residuals:
## Min 1Q Median 3Q Max
## -169.016 -32.813 0.004 45.804 136.914
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 65.74886 48.95871 1.343 0.21217
## CONSUMPTION 0.22912 0.06921 3.310 0.00908 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 84.13 on 9 degrees of freedom
## Multiple R-squared: 0.549, Adjusted R-squared: 0.4989
## F-statistic: 10.96 on 1 and 9 DF, p-value: 0.009081
summary(model2)

##
## Call:
## lm(formula = ILL ~ CONSUMPTION, data = smoking2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -62.353 -28.923 -7.861 35.321 66.919
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.55343 28.26713 0.479 0.644
## CONSUMPTION 0.35767 0.04547 7.867 4.93e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 44.92 on 8 degrees of freedom
## Multiple R-squared: 0.8855, Adjusted R-squared: 0.8712
## F-statistic: 61.88 on 1 and 8 DF, p-value: 4.928e-05

We can compare above summaries (summary(model) and summary(model2)), however, it is easier to see the
differences of estimated models by plotting them. Figure 5 shows estimated models with and without the
observation USA.
plot(smoking$CONSUMPTION, smoking$ILL,

ylab = "Cases in 1950",
xlab = "CONSUMPTION in 1930",
main = "CONSUMPTION/ILL per 100 000 individuals",
pch = 16,
cex = 1.5,
col = ifelse(countries != "USA", "blue", "red"),
xlim = c(0, max(smoking$CONSUMPTION)))

abline(model2, lty = 1, lwd = 2)
abline(model, lty = 2, lwd = 2)
legend("topleft", legend = c("No USA", "With USA"), lty = 1:2)
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Figure 5: Estimated linear regression models with and without the observation USA. Observation USA is
colored as red.

Figure 5 shows that compared to the first homework assignment, the estimate for the slope has increased
from 0.23 to 0.36. This implies a stronger linear dependence between lung cancer cases and consumption of
cigarettes among the remaining observations (countries).

2.2
When cement hardens, heat is produced. The amount of heat depends on the composition of the cement.
From file hald.txt, you can find the following information regarding 13 different batches of cement:

HEAT = heat energy (cal/g),
CHEMi = ingredients of cement (% of the dry substance), i ∈ {1, 2, 3, 4}.

a) Estimate a linear regression model with all explanatory variables. Compare statistical significances of
the regression coefficients and examine the variance inflation factors of the corresponding explanatory
variables.

b) Find the best combination of explanatory variables by using Akaike information criterion (AIC).

Solution
First we read the data.
hald <- read.table("data/hald.txt", header = TRUE, sep = "\t")
str(hald)
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## 'data.frame': 13 obs. of 6 variables:
## $ CHEM1: int 7 1 11 11 7 11 3 1 2 21 ...
## $ CHEM2: int 26 29 56 31 52 55 71 31 54 47 ...
## $ CHEM3: int 6 15 8 8 6 9 17 22 18 4 ...
## $ CHEM4: int 60 52 20 47 33 22 6 44 22 26 ...
## $ HEAT : num 78.5 74.3 104.3 87.6 95.9 ...
## $ SUM : int 99 97 95 97 98 97 97 98 96 98 ...

a)

In situations, where it is not known which of the explanatory variables affect the response variable, it is first
usually reasonable to estimate the full model, i.e., the model with all candidates for explanatory variables.

First, we examine the correlations between the different variables.
cor(hald)

## CHEM1 CHEM2 CHEM3 CHEM4 HEAT SUM
## CHEM1 1.00000000 0.2285795 -0.8241338 -0.2454451 0.7307175 0.05010722
## CHEM2 0.22857947 1.0000000 -0.1392424 -0.9729550 0.8162526 -0.26044918
## CHEM3 -0.82413376 -0.1392424 1.0000000 0.0295370 -0.5346707 -0.11025122
## CHEM4 -0.24544511 -0.9729550 0.0295370 1.0000000 -0.8213050 0.32907694
## HEAT 0.73071747 0.8162526 -0.5346707 -0.8213050 1.0000000 -0.16458053
## SUM 0.05010722 -0.2604492 -0.1102512 0.3290769 -0.1645805 1.00000000

The variable HEAT correlates strongly with all explanatory candidates. Correlation is positive with the
variables CHEM1 and CHEM2, and negative with CHEM3 and CHEM4. There is a strong negative correlation
between variables CHEM1 and CHEM3, as well as between variables CHEM2 and CHEM4.

We begin by estimating the full model:

HEAT𝑗 = 𝛽0 + 𝛽1CHEM1𝑗 + 𝛽2CHEM2𝑗 + 𝛽3CHEM3𝑗 + 𝛽4CHEM4𝑗 + 𝜀𝑗, 𝑗 ∈ {1, 2, … , 13}. (1)

fullmodel <- lm(HEAT ~ CHEM1 + CHEM2 + CHEM3 + CHEM4, data = hald)
summary(fullmodel)

##
## Call:
## lm(formula = HEAT ~ CHEM1 + CHEM2 + CHEM3 + CHEM4, data = hald)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1750 -1.6709 0.2508 1.3783 3.9254
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 62.4054 70.0710 0.891 0.3991
## CHEM1 1.5511 0.7448 2.083 0.0708 .
## CHEM2 0.5102 0.7238 0.705 0.5009
## CHEM3 0.1019 0.7547 0.135 0.8959
## CHEM4 -0.1441 0.7091 -0.203 0.8441
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.446 on 8 degrees of freedom
## Multiple R-squared: 0.9824, Adjusted R-squared: 0.9736
## F-statistic: 111.5 on 4 and 8 DF, p-value: 4.756e-07
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The (1) has a high coefficient of determination 98.2%. The value of the 𝐹 -test statistics for the null hypothesis

𝐻0 ∶ 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 0

is 111.5 and the 𝑝-value is close to zero, i.e., the model is statistically significant and at least one of the
regression coefficients 𝛽0, 𝛽1, 𝛽2, 𝛽3 deviates from zero.

However, none of the explanatory variables of the model (1) is statistically significant with a 5%:n level of
significance. This is due to the multicollinearity of the explanatory variables.

Note that 𝐹 -test and 𝑡-test are reliable only when residuals 𝜀𝑖 are normally distributed. By
Figure 6 it seems plausible that residual might not be normally distributed. Thus one should not make too
definitive conclusions based on 𝑡-test and 𝐹 -test.
b <- seq(-4, 4, length.out = 9)
hist(fullmodel$residuals, breaks = b, border = FALSE, col = "skyblue")

Histogram of fullmodel$residuals
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Figure 6: Histogram of estimated residuals of the fullmodel.

Multicollinearity of the explanatory variables can be measured with VIF-coefficients. The VIF-coefficient is
1 for an explanatory variable whose sample correlation is 0 with other explanatory variables. The stronger
a variable is linearly dependent on the other variables, the larger the VIF-coefficient of the variable is. If

VIF > 10,

then multicollinearity might be a problem.
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Consider VIF-coefficient for the explatonary variable CHEM1,

VIF1 = 1
1 − R2

1
,

where R2
1 is the coefficient of determination of the model

CHEM1𝑗 = 𝛼0 + 𝛼2CHEM2𝑗 + 𝛼3CHEM3𝑗 + 𝛼4CHEM4𝑗 + 𝛿𝑗, 𝑗 ∈ {1, 2, … , 13}.

Thus VIF1 can be calculated manually in the following way.
model1 <- lm(CHEM1 ~ CHEM2 + CHEM3 + CHEM4, data = hald)
r1 <- summary(model1)$r.squared
vif1 <- 1 / (1 - r1)
vif1

## [1] 38.49621

We could calculate VIF-coefficiets for other explatonary variables CHEM2, CHEM3 and CHEM4 in a similar
fashion. However, all the VIF-coefficients can be computed with the function vif from the package car.
Install the package car at this point if you have not yet, and attach it if you wish to.
car::vif(fullmodel)

## CHEM1 CHEM2 CHEM3 CHEM4
## 38.49621 254.42317 46.86839 282.51286

In model (1), the VIF-coefficients of the variables CHEM2 and CHEM4 are larger than 200, which indicates that
strong multicollinearity is present in the model.

Multicollinearity of the model (1) is explained by noting that cement consists almost entirely of the substances
CHEM1, CHEM2, CHEM3 and CHEM4, as can be seen by inspecting variable SUM.
hald$SUM

## [1] 99 97 95 97 98 97 97 98 96 98 98 98 98

The sum of variables CHEMi is somewhere between 95-99% for each batch of cement. Therefore, by increasing
the amount of a substance, we have to reduce the amount of some other substances in the mixture. This
explains the strong negative correlations between the variable pairs (CHEM1, CHEM3) and (CHEM2, CHEM4).

b)

There exists different strategies for choosing the explanatory variables of a regression model. When searching
for the best combination of explanatory variables, different models are compared to each other by using some
criterion for model selection.

Some well-known criteria for model selection are, e.g., Akaike information criterion (AIC), Schwarz bayesian
information criterion (SBIC) and Hannan-Quinn criterion (HQ).

Model selection criteria are often based on minimizing/maximizing a function that is of the form,

𝑓(𝑝, 𝜎̂2
𝑝),

where 𝑝 is the number of estimated parameters and 𝜎̂2
𝑝 is the estimated residual variance. In general, we

expect the following from a criterion function:

• Maximal coefficient of determination using as few explanatory variables as possible.

The function step gives the combination of explanatory variables that minimizes the value of AIC. Note
that step computes AIC by assuming normally distributed residuals.
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step(fullmodel)

## Start: AIC=26.94
## HEAT ~ CHEM1 + CHEM2 + CHEM3 + CHEM4
##
## Df Sum of Sq RSS AIC
## - CHEM3 1 0.1091 47.973 24.974
## - CHEM4 1 0.2470 48.111 25.011
## - CHEM2 1 2.9725 50.836 25.728
## <none> 47.864 26.944
## - CHEM1 1 25.9509 73.815 30.576
##
## Step: AIC=24.97
## HEAT ~ CHEM1 + CHEM2 + CHEM4
##
## Df Sum of Sq RSS AIC
## <none> 47.97 24.974
## - CHEM4 1 9.93 57.90 25.420
## - CHEM2 1 26.79 74.76 28.742
## - CHEM1 1 820.91 868.88 60.629

##
## Call:
## lm(formula = HEAT ~ CHEM1 + CHEM2 + CHEM4, data = hald)
##
## Coefficients:
## (Intercept) CHEM1 CHEM2 CHEM4
## 71.6483 1.4519 0.4161 -0.2365

The output can be interpreted as follows. The AIC of the full model is 26.944. When CHEM3 is omitted from
the model, the AIC is 24.974. When CHEM4 is omitted, the AIC is 25.011. When CHEM2 is omitted, the AIC
is 25.728 and when CHEM1 is omitted, the AIC is 30.576. We wish to minimize the model selection criterion
and hence, we estimate the model without CHEM3.

In the next step, by removing any explanatory variable from the estimated model

HEAT𝑗 = 𝑏0 + 𝑏1CHEM1𝑗 + 𝑏2CHEM2𝑗 + 𝑏4CHEM4𝑗, (2)

we just increase AIC. Thus we are left with the estimated model (2).
model_step <- lm(HEAT ~ CHEM1 + CHEM2 + CHEM4, data = hald)
summary(model_step)

##
## Call:
## lm(formula = HEAT ~ CHEM1 + CHEM2 + CHEM4, data = hald)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0919 -1.8016 0.2562 1.2818 3.8982
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 71.6483 14.1424 5.066 0.000675 ***
## CHEM1 1.4519 0.1170 12.410 5.78e-07 ***
## CHEM2 0.4161 0.1856 2.242 0.051687 .
## CHEM4 -0.2365 0.1733 -1.365 0.205395
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.309 on 9 degrees of freedom
## Multiple R-squared: 0.9823, Adjusted R-squared: 0.9764
## F-statistic: 166.8 on 3 and 9 DF, p-value: 3.323e-08

Note that the variables CHEM2 and CHEM4 are not statistically significant with 5% significance level. Figure 6
illustrates the estimated residuals of the full model. The shape of the histogram indicates that the normality
assumption does not hold, which on the other hand means that AIC is not a reliable method for model selec-
tion. In homework assignment 2.3, the model selection is done using the permutation test. The permutation
test does not require normality assumption of residuals and thus, it is the safer alternative here.

Homework
2.3
Continuation to Exercise 2.2. Use backward elimination to choose the model. Perform the backward elimi-
nation using the permutation test. You may utilize lecture slides and demo exercises of the previous week.
Compare results with part b) of Problem 2.2. Use level of significance 𝛼 = 5%.

In backward elimination, the first step is to estimate the full model and examine statistical significance of
the explanatory variables. The least significant variable is removed from the model and after that, a new
model is estimated. Variables are removed from the model one at a time, until all remaining variables are
statistically significant.

2.4
The quantity of a fertilizer affects the yield of wheat. The effect was studied by altering the quantity of
the fertilizer (11 levels) in 33 different cultivations (the same amount of fertilizer in 3 cultivations) and by
measuring the yield of each cultivation. Results of the study are given in the file crop.txt. The variables
are

Yield = Yield (kg/unit of area)
Fertilizer = The amount of the fertilizer (kg/unit of area).

a) Estimate a linear regression model, where Yield is a response variable and Fertilizer is an explanatory
variable. Using regression graphics, study whether the model is sufficient.

b) Estimate a linear regression model, where you have added the explanatory variable

LSqrd = Fertilizer ⋅ Fertilizer

to the model of the part a). That is, LSqrd consists of the squared elements of the variable Fertilizer.
Using regression graphics, study whether the model is sufficient.

c) Compare the results obtained in parts a) and b). Which of the models is more suitable here?
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