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Exercise 2.

2. Theoretical exercises

Demo exercises

2.1 Prove the Gauss-Markov theorem.

Solution. Let the standard assumptions (i)-(v) of the lecture slides be satis�ed. Under
the standard assumptions, Gauss-Markov theorem states that the least squares estima-
tor,

b = (X⊤X)−1X⊤y,

is the best linear unbiased estimator (BLUE) for the regression coe�cients β. In this
context, the best estimator is the estimator with the smallest variance. Let b∗ be a linear
unbiased estimator for the regression coe�cients. In order to prove the Gauss-Markov
theorem, we need to show that,

Cov(b∗)− Cov(b)

is positive semide�nite for every b∗. We proved that b is an unbiased estimator in the
theoretical exercises of week 1. In addition, by the theoretical exercises of week 1, we
have that,

Cov(b) = σ2(X⊤X)−1.

Let,

b∗ = Cy = (D+ (X⊤X)−1X⊤)y,

where C = D + (X⊤X)−1X⊤ is a non-random matrix of size (k + 1) × n. Since b∗ is
assumed to be unbiased, we have that,

E(b∗) = E
[(
D+ (X⊤X)−1X⊤)y] = (

D+ (X⊤X)−1X⊤)Xβ

= (DX+ I)β,

which gives DX = 0, since the equation above has to hold for every β. Recall that,
Cov(y) = σ2I, where σ2 is the variance of the residual terms. Hereby, the covariance
matrix is,

Cov(b∗) = E
[
(b∗ − E(b∗)) (b∗ − E(b∗))⊤

]
= E

[
(Cy− E(Cy)) (Cy− E(Cy))⊤

]
= E

[
C (y− E(y)) (y− E(y))⊤C⊤

)
= C(Cov(y))C⊤ = σ2CC⊤

= σ2
(
D+ (X⊤X)−1X⊤) (D+ (X⊤X)−1X⊤)⊤

= σ2
(
DD⊤ +DX(X⊤X)−1 + (X⊤X)−1X⊤D⊤ + (X⊤X)−1

)
= σ2DDT + σ2(X⊤X)−1 = σ2DD⊤ + Cov(b).
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Furthermore, the di�erence of the covariance matrices is

Cov(b∗)− Cov(b) = σ2DD⊤,

which is a positive semide�nite matrix, since DD⊤ is symmetric and

a⊤(DD⊤)a = c⊤c = ||c||22 ≥ 0,

where c = D⊤a and || · ||2 is the ordinary l2-vector norm. Since the matrix is positive
semide�nite, it follows that the variances of the least squares estimators are smaller
(or at most equal) than the variances of the estimator b∗. Note that, the equality is
involved above, since the matrix D is not necessary of full-rank.

2.2 Let

y = Xβ + ε, X ∈ Rn×k,

be a linear model without the intercept term that satis�es the standard assumptions
(i)-(v). Instead of the usual least squares criterion consider the following constrained
least squares criterion,

g(β) = ∥y−Xβ∥2 + λ∥β∥2, λ > 0,

where ∥β∥2 = β⊤β.

(a) Show that bλ = (X⊤X+ λI)−1X⊤y minimizes the criterion g(β).

(b) Compute E[bλ]. Is the estimator bλ unbiased?

(c) Compute Cov(bλ).

(d) Show that Cov(b)− Cov(bλ) is positive de�nite, where b is the least squares esti-
mator. Is this a violation of Gauss-Markov theorem?

Solution.

(a) Denote f(β) = ε⊤ε. Then

g(β) = f(β) + λβ⊤β.

By Exercise 1.2a) we have

f ′(β) = −2y⊤X+ 2β⊤X⊤X

and by generalizing the result of Exercise 1.1c) we have

∂β⊤β

∂β
= 2β⊤.
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Thus
g′(β) = −2y⊤X+ 2β⊤X⊤X+ 2λβ⊤

and by setting g′(β) = 0 we obtain the following equation,

(X⊤X+ λI)β = X⊤y.

Notice that the matrix X⊤X+λI is invertible even if X includes linearly dependent
columns. Now for the zero of the derivative g′(β) we have

bλ = (X⊤X+ λI)−1X⊤y.

It remains to show that bλ in fact minimizes g(β) and is not, for example, a saddle
point. By applying 1.1e) we get

g′′(β) = 2X⊤X+ 2λI.

Matrix X⊤X+ λI is positive de�nite and thus bλ minimizes g(β).

(b) Remember that E[y] = Xβ + E[ε] = Xβ. Then

E[bλ] = E[(X⊤X+ λI)−1X⊤y] = (X⊤X+ λI)−1X⊤E[y]
= (X⊤X+ λI)−1(X⊤X)β.

(1)

We can still expand the expression for E[bλ] so that it is easier to see if bλ is biased.
Notice that

X⊤X = (X⊤X+ λI)− λI

⇒(X⊤X+ λI)−1X⊤X = I− λ(X⊤X+ λI)−1

⇒(X⊤X+ λI)−1X⊤Xβ = β − λ(X⊤X+ λI)−1β.

(2)

By combining Equations (1) and (2) we get

E[bλ] = β − λ(X⊤X+ λI)−1β.

Now bλ is unbiased if and only if

(X⊤X+ λI)−1β = 0 ∀ β ∈ Rk.

However, the matrix (X⊤X + λI)−1 is invertible and thus it has trivial null space.
Hence,

E[bλ] ̸= β, ∀ β ∈ Rk \ {0}.

That is, estimator bλ is biased.

(c) Notice that for covariance we have the following property.

Cov(Abλ) = ACov(bλ)A
⊤,
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where A ∈ Rk×k is a nonrandom invertible matrix. This property of scatter es-
timators is often called a�ne equivariance. Proving the a�ne equivariance of the
covariance is out of the scope of this course. For more details, see the course Mul-
tivariate Statistical Analysis (MS-E2112).

Notice that we can express bλ as

bλ = Aλb,

where b is the least squares estimator and Aλ = (X⊤X + λI)−1X⊤X. Remember
that Cov(b) = σ2(X⊤X)−1. Then by a�ne equivariance of covariance we have

Cov(bλ) = Cov(Aλb) = AλCov(b)A
⊤
λ

= σ2Aλ(X
⊤X)−1A⊤

λ .

(d) Expand the expression for Cov(b)− Cov(bλ),

Cov(b)− Cov(bλ)

= σ2
(
(X⊤X)−1 −Aλ(X

⊤X)−1A⊤
λ

)
= σ2Aλ

(
A−1

λ (X⊤X)−1(A−1
λ )⊤ + (X⊤X)−1

)
A⊤

λ

= σ2Aλ

(
2λ(X⊤X)−2 + λ2(X⊤X)−3

)
A⊤

λ

= σ2(X⊤X+ λI)−1
(
2λI+ λ2(X⊤X)−1

)
(X⊤X+ λI)−1.

Denote B = (X⊤X+ λI)−1 and C = 2λI+ λ2(X⊤X)−1. Notice that both B and C
are positive de�nite. Let x ∈ Rp \ {0}. Then y = Bx is nonzero and

x⊤ (Cov(b)− Cov(bλ))x = σ2x⊤B⊤CBx = σ2y⊤Cy > 0.

Now we have proven that Cov(b)−Cov(bλ) is positive de�nite, from which it follows
that Cov(bλ)−Cov(b) is not positive semide�nite. However, this is not a violation
of Gauss-Markov theorem since the estimator bλ is biased.

Notes about this exercise:

� The variant of linear regression considered in this exercise is called ridge regression.
For more detail about ridge regression, see [HTF09].

� Ridge regression is one way to deal with multicollinearity. Notice that ridge regres-
sion solution exists and is unique even if there are linearly dependent variables.

Homework

2.3 Consider the following data set containing three observations:

y1 = (y11, y12) = (1, 2)

y2 = (y21, y22) = (3, 4)

y3 = (y31, y32) = (5, 6)
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a) Keep the �rst variable (coordinate) �xed and permute the second variable (coordi-
nate). How many distinct permutations can be formed?

b) Keep the �rst variable (coordinate) �xed and permute the second variable (coordi-
nate). Find every distinct permutation.

c) Form 5 bootstrap samples of the data.
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d) Consider the following table with eight distinct scenarios. Which of the following are
possible bootstrap samples?

1 2 3 4 5 6 7 8
(1,2) (3,4) (1,2) (1,2) (1,1) (1,6) (1,4) (4,3)
(1,2) (3,4) (2,1) (3,4) (2,2) (3,2) (1,2) (4,3)
(5,6) (3,4) (1,2) (5,6) (3,3) (5,4) (1,6) (4,3)

2.4 Consider the following linear models,

y = α0 + α1x+ ε, (3)

y = β0 + β1x+ β2z + ν, (4)

where we have n observations for the variables z, y and x. The estimates for the
regression coe�cients are given by the least squares method and are denoted with the
hat symbol. When do the following claims hold true? (consider each part separately)

Note that some of the claims might not be true in any situation. Deduction with good
reasoning is su�cient here.

a.
∑n

i=1 ε̂
2
i ≥

∑n
i=1 ν̂

2
i (ε̂ and ν̂ are the estimated residuals).

b. α̂1 is statistically signi�cant (5% signi�cance level), but β̂1 is not.

c. α̂1 is not statistically signi�cant (5% signi�cance level), but β̂1 is.

d. The coe�cient of determination for model (3) is larger than the coe�cient of
determination for model (4).
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