
Pole-placement by state-space methods



Control Design 
To be considered in controller design

* Compensate the effect of load disturbances
* Reduce the effect of measurement noise
* Setpoint following (target tracking)
* Inaccuracies in the process model and parameter variations

Items to consider in controller design
* Purpose of the control system
* Process model
* Disturbance model
* Model inaccuracies and changes 
* Applicable control strategies
* Design parameters



Process to be controlled 

Real continuous process

Discrete equivalent

A linear state controller
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State controller 

State feedback is the most natural way to control a process, which is 
modelled as a state-space representation and whose states are 
measured or estimated.  At this point it is assumed that the states can 
be measured directly.

 is the process system matrix,  cl is the closed loop system matrix, 
If the process is reachable, the poles of cl can be set arbitrarily.
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State controller 

The eigenvalues of cl i.e. the roots of the characteristic equation of 
the controlled system determine the behaviour of the closed-loop 
system .  The characteristic equation of the controlled system can be 
calculated as

The desired characteristic polynomial is determined by choosing the 
poles (zpi).

By comparing the two characteristic equations,  n conditions are 
obtained,  from which the parameters of  L can be solved.
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State controller, example 

The process

is controlled by a state feedback controller.  The desired closed loop 
poles are  zp1 = zp2 = 0.5.  Determine the controller parameter vector 
L.

Compare with the desired equation
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State controller, example 

The controller is then
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Deadbeat-control

In deadbeat control all poles are set into the origin.  The fastest 
possible discrete controller is obtained, which reaches the final value 
in n steps.  By deadbeat strategy the closed loop characteristic 
equation becomes:
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State observers

It is unrealistic to assume that the states are measurable especially, 
when the noise states have been augmented to the state vector.  
Hence it is reasonable to estimate the unmeasured states.  This is 
possible, if the system is observable.

Consider the SISO-case (SISO= single input-single output, scalars u
and y)
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State observers

The purpose of the estimator is to estimate (x(k)) at time k based on 
present and past values of u and y , (u(k), u(k-1), …, y(k), y(k-1), …) 
The process model is however needed for this purpose.  Define the 
following concepts
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State observers

When the process model is known, it would be logical to substitute 
the controls u to the model and simply calculate the state estimate at 
each time instant.  However, this method does not consider the initial 
values of the state nor disturbances. The information obtained by the 
measured output signal y also remains unused.

The above strategy can be considerably improved .  If the estimated 
and real output are the same, the estimator performs well.  Otherwise 
the estimate must be corrected based on the estimation error.



State observers

Estimator based on the control signal only

Real process

Estimator

Estimator error
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State observers

Add the estimator error term

The performance is studied by comparing the estimate with the real 
state

( ) ( ) ( ) ( ( )  ( ))

( ) ( ) ( ( ) ( ))

( ) ( ) ( )

x x u K y y

x u K y Cx

KC x u Ky

k k k k k

k k k k

k k k

    
   

   

1  
 

 b g

~( ) ( ) ( )

( ) ( ) ( ) ( ) ( ( )  ( ))

( ) ( ) ( ) ( )

( ) ( ) ~( )

x x x

x u x u K y y

x x KC x x

KC x x KC x

k k k

k k k k k k

k k k k

k k k

    

     

   

    

1 1 1

   



 

b g b g
b g b g

b gb g b g



State observers

The model for the error dynamics is

The matrix K is chosen such that the eigenvalues of o are at desired 
places in the complex plane.  If they are inside the unit circle, the 
estimation error decreases, and if they are in the origin, the 
estimation error decreases at the maximum speed (deadbeat-strategy) 
vanishing totally by n steps.  The procedure is dual to pole 
placement in controller design.
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State observers, example

Estimate states of x x

x
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by the dead-beat strategy.  Determine the estimator parameters K.



State observers, example

Compare to the desired characteristic equation
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State observers, example

The estimator is

Let us check the performance by calculating two steps from some 
initial condition

( ) ( ) ( ) ( ( ) ( ))

( ) ( ) ( ) ( )

x x u y x

x x u y

k k k k k

k k k k

 
 L

NM
O
QP


L
NM

O
QP





L
NM

O
QP



  
 L

NM
O
QP


L
NM

O
QP





L
NM

O
QP

1
1 2

1 0

1

0

1

1
0 1

1
1 1

1 1

1

0

1

1

( )

 , ( ) , ( ) , ( ) , ( )x x0 0 0 1 010

20

10

20
0 1 20

L
NM

O
QP


L
NM

O
QP

  
x

x

x

x
u u u u y x



State observers, example

Check first how the process behaves

x x
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State observers, example

x x

x x
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State observers, example
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The estimator can only use input and output signals u and y.

Based on this information the estimator should find x(2) without any 
knowledge of the real initial state (or real state at any time instant).  
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State observers, example

Let us calculate the estimate recursively from an arbitrary initial 
guess

( )

x 0 10

20


L
NM

O
QP

x

x

10 10 20 0 20
0 20

20 10 20 20

1 1 1 1
ˆ ˆ(1) (0) (0) (0)

1 1 0 1

ˆ ˆ ˆ1 1 1 1

ˆ ˆ ˆ1 1 0 1

u y

x x x u x
u x

x x x x

       
            

             
                     

x x



State observers, example
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The estimator converges and the real state is found in two steps 
according to the dead-beat strategy, even if the process itself is 
unstable (like in this example).



An alternative state estimator
Above the output measurement at time k is used to estimate the state   
x(k+1), (at time k+1).  So there is a delay.

Another possibility is to use the measurement y(k) at time k to 
estimate x(k) .  It then follows
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An alternative state estimator, cont

The estimator error dynamics is now

Additionally, it holds that

By choosing   I-CK = 0 or CK = I, the estimation error can be 
eliminated 
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An alternative state estimator, cont

The order of the estimator can then be reduced, which leads to the 
so-called  Luenberger observer .  Use the previous example and 
design a  Luenberger observer with deadbeat-strategy.

So that the second element of the matrix K (k2) is fixed.  Tune k1

with deadbeat-strategy.
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An alternative state estimator, cont

By comparing to deadbeat-criterion (z2 = 0)  k1 becomes -1.

The observer becomes
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An alternative state estimator, cont

The second state is not observed at all.  It is only recognized to be 
the same as the output signal.
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An alternative state estimator, cont

Try the Luenberger estimator as it was done previously with the full-
order observer.

The observer finds the correct state with one step.
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Output feedback

By combining the state observer and state feedback controller it is 
possible to design a controller based on output measurements. 

Process

Observer

Controller
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Output feedback, cont

The process

is controlled with state feedback,
which uses an estimated state.

For the controlled 
system 
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Output feedback, cont

For the state observer it holds that

By considering these equations it follows that
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Output feedback, cont

The state equations of the controlled system are

The dimension of the controlled system is  2n and the characteristic 
equation is
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Output feedback, cont

The eigenvalues of the closed-loop system is a combination of the 
eigenvalues of the controller and estimator.  The important 
consequence of this is that the state feedback controller and state 
estimator can be designed separately without bothering about
their influence on each other.



Servo problem

Until now only regulator problems have been discussed.  If the 
system has to follow a changing reference signal, the servo problem 
follows.

In the most simple setting the reference signal is added to the system 
multiplied by a constant Lc , which is tuned to ensure the static gain 
1 (in order not to have a permanent error).  However this is not a 
good solution generally: the reference signal may change, also there 
might be load disturbances entering the system meaning that the 
permanent error can not be avoided in practice.



Use the control law

In which yREF is the setpoint
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Servoproblem, cont

u
Process

Observer

Lc

-L
yx̂

yREF

x

x

L L

0 KC

x

x

L

0
y

y C 0
x

x

( )
~( )

( )
~( )

( )

( )
( )

~( )

k

k

k

k
k

k
k

k

c
REF




L
NM

O
QP





L
NM

O
QP
L
NM

O
QP

L
NM

O
QP


L
NM

O
QP

R

S
||

T
|
|

1

1

  






Often servo and regulator parts are combined (feedforward Hff) and  
(feedback Hfb).

Two-degrees-of-freedom controller
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Harmonic oscillator
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The pendulum is controlled
by a horizontal force.

Basic equations of circular
motion
I (moment of inertia), 
M (momentums)
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Use the state variables 1 2
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which gives the nonlinear state-space representation
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where it has been assumed
g =l, m = 1/l , for simplicity.



Linearization around the equilibrium point
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Generalization
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Problem to think...

Design a discrete-time controller to the pendulum.

What things must be considered?

How do you proceed?



Problem to think...
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Process and its characteristics
- regulator problem?
- servo problem?

Linearity?
Linearization?

Controller design
Simulation

What about nonlinear
design methods?
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Problem to think...

Either: design the compensator in continuous time and
discretize it

or:      Diskretize the process and design the compensator
directly in discrete time.

Note:
- diskretization
- choosing the sampling interval, e.g.
- state feedback control
- state observer, 
- servo problem, disturbances, static gain, integration

in the controller

0 0.2 0.6h  



Problem to think...

);,Gamma,Phi( place

];3.0;2.0[

pL

p




Gtf=tf(1,[1 0 1]);
Gss=ss(Gtf);
h=0.3;
Htf=c2d(Gtf,h,’zoh’);
Hss=ss(Htf);
[Phi,Gamma,C,D]=
ssdata(Hss);

Dimensions?



State controller and -observer

xh

To Workspace2

u

To Workspace1

y

To Workspace

-L* uvec

Gain

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Discrete State-Space1

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Discrete State-Space



State controller and -observer

But what are the matrices in the state observer block?
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Note. partitioned
matrices

But this is an ordinary state-space representation!  The
corresponding Simulink block can directly be used. 
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State controller and -observer
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State controller and -observer

A couple things to note:
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State controller and -observer

xh

To Workspace2

u

To Workspace1

y
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K*uvec
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You can do it
this way also.

Usually you have
to fight with the
dimensions.



It is desired to get one compensator (pulse transfer 
function).  Let’s see
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The input to the ”combined controller” is the measured
signal y, and the output is the control u.  
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Connecting the controller and observer

Eliminate ˆ ( )X z
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Finally
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Connecting the controller and observer

How do you realize the controller (e.g. in Matlab)?

  1
( )cH z L zI L KC K

    

But this has the familiar form   1
C zI


 

which corresponds to the matrices in state-space represen-
tation  , , ,0C 



Connecting the controller and observer

Instead of calculating by hand realize the controller

  1
( )cH z L zI L KC K

    

by the Matlab commands

ss( , , ,0);

tf ( )

Hcss L KC K L

Hc Hcss

    




Connecting the controller and observer

u

To Workspace1

y

To Workspace

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Discrete State-Space1

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Discrete State-Space

The simulation
result is the
same as earlier.



Reference signal and load disturbance

1

Out1

xh

To Workspace2

u

To Workspace1

y

To Workspace
Subtract

Step1

Step

mc

Gain1

-L* uvec

Gain

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Discrete State-Space1

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Discrete State-Space

1

In1

[Phi1,Gamma1,C1,D1]=dlinmod('heiluri_a2');
mc=1/ddcgain(Phi1,Gamma1,C1,D1);sim('heiluri_a2');
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Step in reference
compensated by
a pre-
compensator
(mc).

Noise term is 0
(at the process
output).
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A stepwise load
disturbance occurs
at the time t = 5.

A permanent error!



Reference signal and load disturbance

Bad; load disturbances cannot be compensated by a
pre-compensator.  What to do? 

Hmm. Integration?

Add an integratorto the controller.  But how?

Look at the process representation

( 1) ( ) ( )

( ) ( )

x k x k u k

y k Cx k

   




Reference signal and load disturbance

Augment the state by introducing 1( )nx k

when n is the original state dimension.  Choose

 1 1 1( ) ( ) ( 1) ( 1) ( 1)n n nx k x k x k h y k r k         

where r is the reference signal.  Here the error signal is
integrated.

By combining the states we obtain (note the block matrices)



Reference signal and load disturbance

1 1

( 1) ( )0 0
( ) ( )

( 1) ( )1 0

augaug

n n

x k x k
u k r k

x k x khC h 



          
                   

Design a state feedback controller

 1
1 1

( ) ( )
( )

( ) ( )n uusi
n n

x k x k
u k L l L

x k x k
 

   
      

   

place( , , );uusi aug aug augL p   Note.  New L and new p
contain n+1 components.



Reference signal and load disturbance

The closed loop system becomes

1

1 1

( 1) ( ) 0
( )

( 1) ( )1
n

n n

x k x kL l
r k

x k x khC h


 

         
              

where the eigenvalues of the system matrix are inside
the unit circle.  If r is relatively ”slow”, the state
components approach some constant values.  But then



Reference signal and load disturbance

 1 1 1( ) ( ) ( 1) ( 1) ( 1)n n nx k x k x k h y k r k         

approaches zero; the output follows the reference. 

Note that when adding a new state we did not change the
process (that would not do).  The new state is basically
part of the controller in the end.  But mathematically it is
possible to consider all these states together.



Reference signal and load disturbance

1

Out1

xh

To Workspace2

u

To Workspace1

y

To Workspace

Subtract1

Subtract

Step1

Step

mc

Gain1

-L* uvec

Gain

K Ts

z-1
Discrete-Time

Integrator

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Discrete State-Space1

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Discrete State-Space

1

In1
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The effect of the load disturbance is removed by the
integrator.


