Power Electronics (ELEC-E8412)

Exercise\# 01

Question No. 1

A load is supplied by,

$$
V(t)=5+100 \operatorname{Cos}(314 t)+6 \operatorname{Cos}\left(2(314) t+15^{\circ}\right)+40 \operatorname{Cos}\left(3(314) t+30^{\circ}\right)
$$

The current is given as,

$$
i(t)=8+50 \operatorname{Cos}\left(314 t+30^{\circ}\right)+6 \operatorname{Cos}\left(2(314) t+45^{\circ}\right)+10 \operatorname{Cos}\left(3(314) t+65^{\circ}\right)
$$

Find,
a) RMS Voltage.
b) RMS Current.
c) THD of load current.

Question No. 2

A non-linear load is supplied by a voltage,

$$
V(t)=300 \operatorname{Cos}(2 \pi 50 t)
$$

The resulting non-linear current is given as,

$$
\mathrm{i}(\mathrm{t})=10+70 \operatorname{Cos}\left(2 \pi 50 \mathrm{t}+20^{\circ}\right)+40 \operatorname{Cos}\left(6 \pi 50 \mathrm{t}+15^{\circ}\right)+30 \operatorname{Cos}\left(8 \pi 50 \mathrm{t}+25^{\circ}\right)
$$

Find,
a) Power absorbed by load.
b) Power factor of load.
c) THD of load current.

Question No. 3

The voltage across a 10Ω resistor is

$$
v(t)=170 \operatorname{Sin}(377 t)
$$

Determine,
a) Instantaneous power.
b) Average power.
c) Peak power.

Question No. 4

The voltage and current of a circuit is given by,

$$
\begin{gathered}
v(t)=3+5 \operatorname{Cos}\left(2 \pi 60 t+15^{\circ}\right)+2 \operatorname{Cos}(4 \pi 60 t) \\
i(t)=2+7 \operatorname{Cos}\left(2 \pi 60 t+45^{\circ}\right)+3 \operatorname{Cos}\left(6 \pi 60 t+25^{\circ}\right)
\end{gathered}
$$

Find,
a) RMS voltage and current.
b) Power absorbed by the circuit.
c) Power factor.

