## Question 1:

A load is supplied by,
$V(t)=5+100 \operatorname{Cos}(314 t)+6 \operatorname{Cos}\left(2(314) t+15^{\circ}\right)+40 \operatorname{Cos}\left(3(314) t+30^{\circ}\right)$
The current is given as,
$\mathrm{i}(\mathrm{t})=8+50 \operatorname{Cos}\left(314 \mathrm{t}+30^{\circ}\right)+6 \operatorname{Cos}\left(2(314) \mathrm{t}+45^{\circ}\right)+10 \operatorname{Cos}\left(3(314) \mathrm{t}+65^{\circ}\right)$

Find,
a) RMS Voltage.
b) RMS Current.
c) THD of load current.
$\mathbf{V}(\mathbf{t})=5+100 \operatorname{Cos}(314 t)+6 \operatorname{Cos}\left(2(314) t+15^{\circ}\right)+40 \operatorname{Cos}\left(3(314) t+30^{\circ}\right)$

$$
\mathbf{i}(\mathbf{t})=8+50 \operatorname{Cos}\left(314 t+15^{\circ}\right)+6 \operatorname{Cos}\left(2(314) t+30^{\circ}\right)+10 \operatorname{Cos}\left(3(314) t+45^{\circ}\right)
$$

## a) RMS Voltage:

Using the formula,

$$
\begin{gathered}
V_{r m s}=\sqrt{V_{o}^{2}+V_{1, r m s}^{2}+V_{2, r m s}^{2}+\cdots} \\
V_{r m s}=\sqrt{(5)^{2}+\left(\frac{100}{\sqrt{2}}\right)^{2}+\left(\frac{6}{\sqrt{2}}\right)^{2}+\left(\frac{40}{\sqrt{2}}\right)^{2}} \\
V_{r m s}=76.40 \mathrm{~V}
\end{gathered}
$$

## b) RMS Current:

We know that,

$$
\begin{gathered}
I_{r m s}=\sqrt{(8)^{2}+\left(\frac{50}{\sqrt{2}}\right)^{2}+\left(\frac{6}{\sqrt{2}}\right)^{2}+\left(\frac{10}{\sqrt{2}}\right)^{2}} \\
I_{r m s}=37.17 \mathrm{~A}
\end{gathered}
$$

$\mathbf{V}(\mathbf{t})=5+100 \operatorname{Cos}(314 t)+6 \operatorname{Cos}\left(2(314) t+15^{\circ}\right)+40 \operatorname{Cos}\left(3(314) t+30^{\circ}\right)$ $\mathbf{i}(\mathbf{t})=8+50 \operatorname{Cos}\left(314 t+15^{\circ}\right)+6 \operatorname{Cos}\left(2(314) t+30^{\circ}\right)+10 \operatorname{Cos}\left(3(314) t+45^{\circ}\right)$

## c) THD:

We have the formula,

$$
\begin{aligned}
& T H D=\sqrt{\frac{I_{r m s}^{2}-I_{1, r m s}^{2}}{I_{1, r m s}^{2}}} \\
& T H D=\sqrt{\frac{(37.17)^{2}-\left(\frac{50}{\sqrt{2}}\right)^{2}}{\left(\frac{50}{\sqrt{2}}\right)^{2}}} \\
& T H D=0.3244=32.44 \%
\end{aligned}
$$

## Question 2:

A non-linear load is supplied by a voltage,

$$
V(t)=300 \operatorname{Cos}(2 \pi 50 t)
$$

The resulting non-linear current is given as,

$$
i(t)=10+70 \operatorname{Cos}\left(2 \pi 50 t+20^{\circ}\right)+40 \operatorname{Cos}\left(6 \pi 50 t+15^{\circ}\right)+30 \operatorname{Cos}\left(8 \pi 50 t+25^{\circ}\right)
$$

Find,
a) Power absorbed by load.
b) Power factor of load.
c) THD of load current.

## a) Power Absorbed by Load:

$\mathbf{V}(\mathbf{t})=300 \operatorname{Cos}(2 \pi 50 t)$
$\mathbf{i}(\mathbf{t})=10+70 \operatorname{Cos}\left(2 \pi 50 t+20^{\circ}\right)+$
$40 \operatorname{Cos}\left(6 \pi 50 t+15^{\circ}\right)+30 \operatorname{Cos}\left(8 \pi 50 t+25^{\circ}\right)$
To find the power absorbed by load, we have the formula,

$$
\begin{aligned}
& P=V_{0} I_{0}+\sum V_{r m s} I_{r m s} \operatorname{Cos}(\theta-\varphi) \\
& \therefore V_{r m s}=\frac{V_{m}}{\sqrt{2}} \\
& P=(0)(10)+\left(\frac{300}{\sqrt{2}}\right)\left(\frac{70}{\sqrt{2}}\right) \cos (0-20)+\left(\frac{0}{\sqrt{2}}\right)\left(\frac{40}{\sqrt{2}}\right)+\left(\frac{0}{\sqrt{2}}\right)\left(\frac{30}{\sqrt{2}}\right) \\
& P=9.86 \mathrm{~kW}
\end{aligned}
$$

## b) Power Factor:

We know that,
where,

$$
P F=\frac{P}{S}=\frac{P}{V_{\text {in }(r m s)} I_{i n(r m s)}}
$$

$$
\therefore V_{r m s}=\frac{V_{m}}{\sqrt{2}}=\frac{300}{\sqrt{2}}=212.13 \mathrm{~V}
$$

```
\(\mathbf{V}(\mathbf{t})=300 \operatorname{Cos}(2 \pi 50 t)\)
\(\mathbf{i}(\mathbf{t})=10+70 \operatorname{Cos}\left(2 \pi 50 t+20^{\circ}\right)+\)
```

and,

$$
I_{r m s}=\sqrt{(10)^{2}+\left(\frac{70}{\sqrt{2}}\right)^{2}+\left(\frac{40}{\sqrt{2}}\right)^{2}+\left(\frac{30}{\sqrt{2}}\right)^{2}}=61.64 \mathrm{~A}
$$

So,

$$
P F=\frac{9866}{212.13 \times 61.64}=0.75
$$

## c) THD of Load Current:

For THD, we have the formula,

$$
T H D=\sqrt{\frac{I_{r m s}^{2}-I_{1, r m s}^{2}}{I_{1, r m s}^{2}}}=\sqrt{\frac{(61.64)^{2}-(70 / \sqrt{2})^{2}}{(70 / \sqrt{2})^{2}}}
$$

$$
T H D=0.7421=74.21 \%
$$

## Question 3:

The voltage across a $10 \Omega$ resistor is

$$
v(t)=170 \operatorname{Sin}(377 t)
$$

Determine,
a) Instantaneous power.
b) Average power.
c) Peak power.

## a) Instantaneous Power:

We have the formulas for instantaneous power,

$$
p(t)=v(t) i(t)
$$

where,

$$
\begin{aligned}
& i(t)=\frac{v(t)}{R} \\
& i(t)=\frac{170 \operatorname{Sin}(377 t)}{10}=17 \operatorname{Sin}(377 t)
\end{aligned}
$$

So,

$$
\begin{aligned}
& p(t)=170 \operatorname{Sin}(377 t) \times 17 \operatorname{Sin}(377 t) \\
& p(t)=2890 \operatorname{Sin}^{2}(377 t) W
\end{aligned}
$$

## b) Average Power:

For average power, we have the formula,

$$
P=\frac{1}{T} \int_{0}^{T} p(t) d t
$$

$$
\begin{aligned}
& P=\frac{1}{2 \pi} \int_{0}^{2 \pi} 2890 \operatorname{Sin}^{2}(377 t) d t \\
& P=\frac{2890}{2 \pi} \int_{0}^{2 \pi} \frac{1-\operatorname{Cos} 2(377) t}{2} d t \\
& P=\frac{2890}{4 \pi} \int_{0}^{2 \pi} 1-\operatorname{Cos}(754) t d t \\
& P=\frac{2890}{4 \pi}\left[t-\frac{\operatorname{Sin} 754 t}{754}\right] \\
& P=\frac{2890}{4 \pi}\left[(2 \pi-0)-\left(\frac{\operatorname{Sin} 754 * 2 \pi}{754}-\frac{\operatorname{Sin} 754 * 0}{754}\right)\right] \\
& P=\frac{2890}{4 \pi}[6.27]=1444.74 \mathrm{~W}
\end{aligned}
$$

## c) Peak Power:

From the instantaneous power, we have

$$
\text { Peak Power }=2890 \mathrm{~W}
$$

## Question 4:

The voltage and current of a circuit is given by,

$$
\begin{aligned}
& v(t)=3+5 \operatorname{Cos}\left(2 \pi 60 t+15^{\circ}\right)+2 \operatorname{Cos}(4 \pi 60 t) \\
& i(t)=2+7 \operatorname{Cos}\left(2 \pi 60 t+45^{\circ}\right)+3 \operatorname{Cos}\left(6 \pi 60 t+25^{\circ}\right)
\end{aligned}
$$

Find,
a) RMS voltage and current.
b) Power absorbed by the circuit.
c) Power factor.

```
v(t)=3+5\operatorname{Cos}(2\pi60t+15\mp@subsup{5}{}{\circ})+2\operatorname{Cos}(4\pi60t)
```

```
i(t)=2+7\operatorname{Cos}(2\pi60t+4\mp@subsup{5}{}{\circ})+3\operatorname{Cos}(6\pi60t+2\mp@subsup{5}{}{\circ})
```

```
i(t)=2+7\operatorname{Cos}(2\pi60t+4\mp@subsup{5}{}{\circ})+3\operatorname{Cos}(6\pi60t+2\mp@subsup{5}{}{\circ})
```

a) RMS Voltage and Current:

The RMS voltage and current is given as,

$$
\begin{aligned}
& V_{r m s}=\sqrt{(3)^{2}+\left(\frac{5}{\sqrt{2}}\right)^{2}+\left(\frac{2}{\sqrt{2}}\right)^{2}}=4.85 \mathrm{~V} \\
& I_{r m s}=\sqrt{(2)^{2}+\left(\frac{7}{\sqrt{2}}\right)^{2}+\left(\frac{3}{\sqrt{2}}\right)^{2}}=5.74 \mathrm{~A}
\end{aligned}
$$

b) Power Absorbed by Load:

$$
\begin{aligned}
& P=V_{0} I_{0}+\sum V_{r m s} I_{r m s} \operatorname{Cos}(\theta-\varphi) \\
& \therefore V_{r m s}=\frac{V_{m}}{\sqrt{2}} \\
& P=(3)(2)+\left(\frac{5}{\sqrt{2}}\right)\left(\frac{7}{\sqrt{2}}\right) \cos (15-45)+\left(\frac{2}{\sqrt{2}}\right)(0)+(0)\left(\frac{3}{\sqrt{2}}\right) \\
& P=21.15 \mathrm{~W}
\end{aligned}
$$

## c) Power Factor:

We know that PF is give as,

$$
\begin{gathered}
P F=\frac{P}{S}=\frac{P}{V_{\text {in }(r m s)} I_{\text {in }(r m s)}} \\
P F=\frac{21.15}{4.85 \times 5.74} \\
P F=0.7597
\end{gathered}
$$

$$
I_{r m s}=5.74 \mathrm{~A}
$$

