
ELEC-E8125 Reinforcement Learning
Actor-critic methods

Joni Pajarinen
11.10.2022

Motivation

• Policy gradient (PG) methods may be often ineffective in

terms of requiring lots (and lots and lots) of data

because of high variance of gradient estimates
Similar to MC approaches for value function estimation

• Temporal difference (TD) approaches have smaller
variance compared to MC but they cannot handle

stochastic policies or continuous action spaces like PG

• Can we combine PG with something like TD?

https://www.youtube.com/watch?v=xyJAvghtqIM

https://www.youtube.com/watch?v=xyJAvghtqIM

Today

• Combining policy gradient with value functions

→ actor-critic methods

Learning goals

• Understand basis of actor-critic approaches

Value-based vs policy-based RL

VALUE FUNCTION POLICY

Value-based
• Learnt value function
• Implicit policy

Policy-based
• No value function
• Learnt policy

Actor-critic
• Learnt value function
• Learnt policy

Actor-critic approach – overview

• Critic estimates value
function

• Actor updates policy in
direction of critic

• For example, policy
gradient where critic
estimates value function
– See previous lectures

Policy gradient – recap

REINFORCE

1. Run policy, collect

2.

3.

{τ i } τ i=(s0
i ,a0

i , r0
i , s1

i ,a1
i , r1

i ,…)

θ←θ+α∇ θ R(θ)

∇θ R(θ)≈
1
J
∑i=1

J

(∑t=0

T
∇ θ logπθ (at

i
∣st
i
)(∑t '= t

T
r (st '

i ,a t '
i
)))

Note: Discount omitted
to get shorter notation

Policy gradient – recap

REINFORCE

1. Run policy, collect

2.

3. θ←θ+α∇ θ R(θ)

What’s this?
Does it look familiar?

{ τ i } τ i=(s0
i ,a0

i , r0
i , s1

i ,a1
i , r1

i ,…)

∇θ R(θ)≈
1
J
∑i=1

J

(∑t=0

T
∇ θ logπθ (at

i
∣s t
i
)(∑t '= t

T
r (st '

i ,a t '
i
)))

Policy gradient – recap

REINFORCE

1. Run policy, collect

2.

3. θ←θ+α∇ θ R(θ)

What’s this?
Does it look familiar?

Qπ (st , at)=∑t=t '

T
E [r (s t '

i , at '
i
)∣st , a t]

Q is true expected reward, unlike the estimate in step 2.
This would reduce variance of the gradient estimate.

∇θ R(θ)≈
1
J∑i=1

J

(∑t=0

T
∇ θ log πθ(a t

i
∣st
i
)Q (s t

i ,a t
i
))

∇θ R(θ)≈
1
J
∑i=1

J

(∑t=0

T
∇ θ logπθ (at

i
∣st
i
)(∑t '= t

T
r (st '

i ,a t '
i
)))

{ τ i } τ i=(s0
i ,a0

i , r0
i , s1

i ,a1
i , r1

i ,…)

Remember the baselines?
∇ θR (θ)=E θ [∇θ log pθ(τ)(R (τ)−b)]

How to find a good baseline for ?

Baseline: a function that does not affect the expected gradient, that is,
one that does not depend on the action or new policy parameters.

∇ θ R (θ)≈
1
J ∑i=1

J

(∑t=0

T
∇θ log πθ(at

i
∣s t
i
) (Q (s t

i ,a t
i
)−b))

Q (s t
i , at

i
)

Remember the baselines?
∇θ R (θ)=Eθ [∇θ log pθ (τ)(R(τ)−b)]

How to find a good baseline for ?

Baseline: a function that does not affect the expected gradient, that is,
one that does not depend on the action or new policy parameters.

We can use value function as baseline!

∇ θ R (θ)≈
1
J ∑i=1

J

(∑t=0

T
∇θ log πθ(at

i
∣s t
i
) (Q (s t

i ,a t
i
)−b))

Q (s t
i , at

i
)

V (s t)

∇ θR (θ)≈
1
J∑i=1

J

(∑t=0

T

(∇θ logπθ (at
i
∣s t
i
)) (Q (st

i ,a t
i
)−V (st

i
)))

Remember the baselines?
∇θ R (θ)=Eθ [∇θ log pθ (τ)(R(τ)−b)]

How to find a good baseline for ?

Baseline: a function that does not affect the expected gradient, that is,
one that does not depend on the action or new policy parameters.

We can use value function as baseline!

∇ θR (θ)≈
1
J∑i=1

J

(∑t=0

T

(∇θ logπθ (at
i
∣s t
i
)) (Q (st

i ,a t
i
)−V (st

i
)))

∇ θ R (θ)≈
1
J ∑i=1

J

(∑t=0

T
∇θ log πθ(at

i
∣s t
i
) (Q (s t

i ,a t
i
)−b))

Q (s t
i , at

i
)

V (s t)

advantage function A(st
i ,a t

i)

∇θ R(θ)≈
1
J∑i=1

J

(∑t=0

T
∇ θ logπθ(a t

i
∣st
i
)A (s t

i ,a t
i
))

Value of a compared to
the expected value

Determining the advantage

∇θ R(θ)≈
1
J∑i=1

J

(∑t=0

T
∇ θ log πθ(a t

i
∣s t
i
)A (s t

i ,a t
i
))

How to find a good
estimate for this?

Estimate Q, V, or A?

V has the fewest parameters, so let’s estimate it (from data).
But how to then get A?

A(st ,a t)=Q (st ,a t)−V (st)

Q (s t , at)=r (s t , at)+γ E st +1∼π(s t+1∣s t , a t) [V (s t+1)]

A (s t ,at)≈r(s t ,a t)+γV (s t+1)−V (s t)

Does this look familiar?

Thus, knowing V allows approximating A.

How to fit V?

Fitting value functions (mostly recap)

• Episodic batch fitting: (1) gather data, (2) fit (least
squares) over gathered data

• Data = state-value pairs

• Requires episodic environments to get the value
• Fitting criterion L(ϕ)=∑i‖V ϕ(s i)− y i‖

2

{(sti ,∑t '=t

T
r t '
i)}

y t
i

Any parametric function
approximator

But what about non-episodic?
What do we do then?

Fitting value functions (mostly recap)

• Non-episodic batch fitting: (1) gather data, (2) fit (least
squares) over gathered data

• Data = state-value pairs

• Identical fitting criterion
L(ϕ)=∑i‖V ϕ(s i)− y i‖

2

{(s t
i , r t

i
+V (s t+1

i
)) }

y t
i

Any parametric function
approximator

Wrap-up: A batch TD actor critic

Batch actor-critic

1. Run policy, collect

2. Fit

3. Evaluate

4. Evaluate

5. Update

6. Repeat

{τ i } τ i=(s0
i ,a0

i , r0
i , s1

i ,a1
i , r1

i ,…)

θ←θ+α∇ θ R(θ)

A (s t ,at)≈r (s t ,a t)+γV ϕ(s t+1)−V ϕ(s t)

∇θ R(θ)≈
1
J∑i=1

J

(∑t=0

T
∇ θ log πθ(a t

i
∣s t
i
)A (s t

i ,a t
i
))

What about discount?

V ϕ (st)

An on-line TD actor critic (with discount)

On-line actor-critic

1. Take action

2. Update using

3. Evaluate

4. Evaluate

5. Update

6. Repeat

a=π(a∣s)

θ←θ+α∇ θ R(θ)

A(st ,a t)≈r(st , at)+γV (s t)−V (s t+ 1)

∇θ R(θ)≈∇ θ log πθ (at
i∣s t

i)A (s t
i ,a t

i)

ϕ←ϕ+β (r t+γV ϕ(s t+ 1)−V ϕ (s t))∇ ϕV ϕ(s t)V ϕ (st)

learning
rate

From lecture 4!

In practice, even this works best in batches
(decreases variance in gradient estimates).

Note: TD estimate can be biased.

Deep Deterministic Policy Gradient (DDPG)

Off-policy actor-critic with batch updates and “slow” targets

1. Add data to replay buffer using

2. Update using

3. Update using

4. “Delayed” update of Q and policy parameter targets
using run-time averaging:

a=πθ(s)+ϵ ,where ϵ∼N (0 ,σ 2
)

θ←θ+α∇ θQϕ(s t ,πθ(st))

Qϕ(s t ,at)

[Lillicrap et al. 2016, ICLR]

ϕ←ϕ+β (r t+γQ ϕtarg
(st+1 ,πθtarg

(s t +1))−Q ϕ(s t , at))∇ ϕQ ϕ(st , at)

πθ(s t)

ϕtarg←ξϕtarg+(1−ξ)ϕ

θtarg←ξθtarg+(1−ξ)θ

Challenge: Gradient step sizes

θ←θ+α∇ θ R(θ)

Gradient step size affects convergence (speed) greatly
but is difficult to set.

Incorrect step size may lead to divergence or slow convergence.

How to guarantee policy improvement?

Reformulating policy gradient through
surrogate advantage
• How to predict performance of updated policy (since we

do not have data about it yet)?

• Surrogate advantage approximates performance
difference between previous and updated policies

Rθ old

IS
(θ)=Eτ∼πθold [

πθ (a t∣st)

πθ old
(a t∣st)

A
πθold (st , a t)]

Rθold

IS (θ)

See the importance sampling in effect!

Can we find a lower bound for this?
Yes, using KL-divergence.

Bounding surrogate advantage

maxθ (Rθold

IS
(θ)−c DKL

max
(θold ,θ))

Result: Policy is guaranteed to improve by optimizing

where

is the maximum Kullback-Leibler divergence between the policies.

DKL
max (θold ,θ)

known constant

In practice leads to slow convergence,
not easy to optimize.

Optimizing the lower bound function
does not require step size!Intuition: The further

you go from
current policy,
the larger is the
penalty.

Trust region policy optimization
(Schulman et al. 2015)

maxθRθold

IS (θ)

Instead of lower bound, optimize surrogate advantage and constrain
KL-divergence:

such that

Intuition: Limit the policy parameter change such that the actions do
not change too much in the relevant part of state space.

For policies with many parameters, this is still (too) costly to compute
and the constraint is approximated (details in the paper).

D̄KL(θold ,θ)≡E τ∼πθ old
[D KL(πθ(.∣s) ,πθold

(.∣s))]≤δ

Next: another way to implement the same idea.

Proximal policy optimization
(Schulman et al. 2017)
Remember the surrogate advantage?

Optimize instead

Rθ old

IS
(θ)=E τ∼πθold [

πθ (a t∣s t)

πθ old
(a t∣s t)

A
πθold(s t , a t)]

LCLIP(θ)=E τ∼πθold
[min(g t(θ)A ,clip(g t(θ) ,1−ϵ ,1+ϵ)A)]

g t (θ)

Looks horrible, look at the
figure instead.
In practice: limit influence
of policy change.

Proximal policy optimization
(Schulman et al. 2017)

PPO is a standard baseline at the moment.

Algorithm: PPO
for i = 1, 2, … do
 Run policy, collect trajectories
 Compute advantage estimates
 using current value function
 Update policy by maximizing for K epochs of stochastic
 gradient ascent
 Fit by minimizing using gradient
 descent

{ τ i } τ i=(s0
i ,a0

i , r0
i , s1

i ,a1
i , r1

i ,…)

V ϕ (st)
A(s t ,a t)≈r(st , at)+γV (s t)−V (s t+1)

LCLIP(θ)

V ϕ (st) L(ϕ)≡∑i‖V ϕ(si)− y i‖
2

Other variants
possible

Recent successful algorithms

• Twin Delayed DDPG (TD3), 2018
– Similar to DDPG but improves value function approximation
– Off-policy

• Soft Actor Critic (SAC), 2018
– Q-function learning encouraging policy randomness

(exploration)
– Stochastic policy for continuous actions

– Off-policy

Summary

• Actor-critic approaches allow addressing continuing
problems and continuous action spaces

• They may also learn faster than policy gradient because
variance of policy gradient estimate is reduced

• TRPO/PPO aim to control extent of policy update steps
to avoid oscillation/divergence due to large updates

Next: Model-based RL

• Even with critic, policy-based approaches often require
huge amounts of data

• Can we somehow benefit even more from earlier
experiences?

• Reading: Sutton & Barto 8 - 8.2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

