
Statistical Signal Processing. Homework set #1
due November 11, 2022

1. Suppose that a random variable Z has the following Rayleigh density function

f(z|α) =
{

z
α2 exp{−z2

2α2 }, if z > 0
0, if z ≤ 0

where α > 0.

a) Given N statistically independent measurements of z, find the maximum likelihood esti-
mate of α.

b) Find the Cramer-Rao lower bound on the variance of the unbiased estimator of parameter
α.

2. Let y(1), . . . , y(N) be i.i.d. observations from a location-shifted exponential distribution
with density function

f(y|α, λ) = 1

λ
exp

(
−(y − α)

λ

)
, y ≥ α, α ∈ R, λ > 0.

Find the MLE of (α,λ).

3. Let y(1), . . . , y(N) be i.i.d. observations from a zero-inflated Poisson distribution with
density function given below. Find the MLE of θ.

f(y|θ, λ) =

{
θ + (1− θ)e−λ, y = 0

(1− θ) e
−λλy

y!
, y = 1, 2, 3, . . .
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4. Let Y1, Y2, Y3 be three independent and identically distributed Exponential(1/µ) random
variables. Let

S =
1

4
(2Y1 + Y2 + Y3), T =

1

3
(Y1 + Y2 + Y3).

(a) Check that T is the maximum likelihood estimator of µ.

(b) Show that both S and T are unbiased estimators of µ.

(c) Give a reason for why estimator T should be preferred over S.

(d) Show that in fact T is a minimum-variance unbiased estimator (MVUE) of µ.

� The probability density function of Y ∼ Exponential(λ) is

f(y|λ) = λe−λy, y > 0, λ > 0

and E(Y ) = 1
λ
, var(Y ) = 1

λ2 .

5. Suppose that given 256 measurements y(n) (n = 0, ..., 255) we need to estimate the amplitude
θ = [α0 α1 α2]

T of a sinusoidal in additive Gaussian noise with σ2 = 0.81:

y(n) = α0 + α1cos(2πf0n) + α2sin(2πf0n) + v(n),

where f0 =
1
16

is known. Furthermore, 10% of the original observations are randomly replaced
by outliers that have the maximum signal value (8.0). Desired value of α0 is 0. Pick desired
values of α1 ∈ [2.0, 3.0] and α2 ∈ [0.5, 1.0] randomly.

Estimate α0, α1 and α2 using M-estimation and so-called Andrew’s sine ψ-function given
as follows:

ψ(ỹ) =

{
sin(ỹ/a), |ỹ| ≤ aπ
0, |ỹ| > aπ

and the value of the tuning parameter a is set such that samples yielding measurement residuals
larger that 3σ are rejected completely (have no influence). Use the IRLS method described in
the lecture notes.

In your solution show plots of the desired signal, the noisy signal, the weighting function, the
estimated signal using both M-estimation and Maximum likelihood (LS in this case) estimation,
as well as the desired values and estimated values of the parameters using M-estimation and
LS-estimation. Enclose your matlab code as well.
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6. Expectation-Maximization Algorithm The EM algorithm simultaneously segments
and fits data generated from multiple parametric models. We consider the measured data y(n)
generated by the two linear models:

y(n) = a1x(n) + b1 + v1(n)

y(n) = a2x(n) + b2 + v2(n) (1)

where a1, b1 and a2, b2 are the model parameters. The noise terms v1(n) and v2(n) are assumed
to be Gaussian and zero mean. For generating the data for the Matlab numerical simulation,
choose a1 randomly from interval [−0.5,−0.1], a2 from [0.5, 2], use b1 = 1 and b2 = −0.7.
The explaining variable n runs from n = 0 up with increment of 0.1. Generate the data
corresponding to the two models, considering N = 64 data points produced by each model.
Add the noise to the generated signals and estimate the model parameters from the noisy data
by using the EMAlgorithm. The noise variance for the two models is known σ2

1 = σ2
2 = σ2 = 0.1.

Requirements:

a) Write the analytical derivation for the EM estimation (E-step, M-step).

b) By using Matlab, simulate the data fitting of the two linear models. Plot the data points
together with the estimated models (the two lines in (x, y) plane) after every iteration.

c) Enclose your Matlab code as well

Hints:

� EM Algorithm does not assign directly each data point to one of the models. EM assigns
to each data point, a probability of belonging to one of the models (likelihood).

� E-step: Assume random model parameters in the beginning. Calculate the likelihood of
each data point belonging to each model. For this, you consider the residual error of each
point n for each model k, rk(n) = akx(n) + bk − y(n), k = 1, 2. The likelihood of each
data point is wk(n) = P (ak, bk|rk(n)).

� M-step: Take the likelihood of each data point belonging to each model and re-estimate
the model parameters using Weighted Least Squares. For this, you need to build a
weighted quadratic error function. (The weight for the squared error of each point is the
likelihood of that point).
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