## Exercise 5 - Solutions

## \#1 Elicitation of attribute-specific value functions

The statements about equally preferred distances give equations:
$v(900)-v(600)=v(1250)-v(900)=v(1650)-v(1250)=v(2100)-v(1650)$.
These three equations together with the normalization constraints $v(600)=0$ and $v(2000)=1$ could be used to determine the value function at the given points. The problem is that $x_{N}=2100>2000=a^{*}$. There are two possible approaches to overcome this problem.

## Approach 1:

1. Change $a^{*}$ to 2100 .

- Now $\mathrm{v}(2100)-\mathrm{v}(600)=\mathrm{v}(2100)-\mathrm{v}(1650)+\mathrm{v}(1650)-\mathrm{v}(1250)+\mathrm{v}(1250)-\mathrm{v}(900)+\mathrm{v}(900)-$ $v(600)=4[v(900)-v(600)]$.

2. Normalize the value function such that $v(2100)=1, v(600)=0$.

- Then, $4 \mathrm{v}(900)=1 \Rightarrow \mathrm{v}(900)=0.25, \mathrm{v}(1250)=0.5, \mathrm{v}(1650)=0.75$.

3. Interpolate to get $\mathrm{v}(1200)$ and $\mathrm{v}(1700)$.

- $\mathrm{v}(1200)-\mathrm{v}(900)=[1200-900] /[1250-900]^{*}[\mathrm{v}(1250)-\mathrm{v}(900)] \Rightarrow \mathrm{v}(1200)=0.46$
- $\mathrm{v}(1700)-\mathrm{v}(1650)=[1700-1650] /[2100-1650] *[\mathrm{v}(2100)-\mathrm{v}(1650)] \Rightarrow \mathrm{v}(1700)=0.78$


## Values: $(A)=0.25,(B)=0.46,(C)=0.78$

Approach 2:

1. Interpolate to get $\mathrm{v}(2000)-\mathrm{v}(600)$
$=v(2000)-v(1650)+v(1650)-v(600)$
$=v(2000)-v(1650)+3[v(900)-v(600)]$
$=[v(2100)-\mathrm{v}(1650)] *[2000-1650] /[2100-1650]+3[\mathrm{v}(900)-\mathrm{v}(600)] \quad$ Notice equal terms
$=(3+[2000-1650] /[2100-1650]) *[v(900)-v(600)]$
$=(34 / 9) *[v(900)-v(600)]$
2. Normalize such that $\mathrm{v}(2000)=1, \mathrm{v}(600)=0$

- Then, $v(900)=9 / 34, v(1250)=18 / 34, v(1650)=27 / 34$.

3. Interpolate to get $\mathrm{v}(1200)$ and $\mathrm{v}(1700)$

- $\mathrm{v}(1200)-\mathrm{v}(900)=[1200-900] /[1250-900] *[\mathrm{v}(1250)-\mathrm{v}(900)] \Rightarrow \mathrm{v}(1200)=0.49$
- $\quad v(1700)-v(1650)=[1700-1650] /[2100-1650] *[v(2100)-v(1650)] \Rightarrow v(1700)=0.82$


## Values: $(A)=0.26,(B)=0.49,(C)=0.82$

## \#2 Difference independence

Let x 1 denote the time since last pavement and x 2 denote the average hourly number of cars that use the road. The fact that the value increases with respect to both attributes can be represented as follows:
I. $\quad x 1>x 1^{\prime} \Rightarrow V(x 1, x 2) \geq V\left(x 1^{\prime}, x 2\right)$
II. $\quad x 2>x 2^{\prime} \Rightarrow V(x 1, x 2) \geq V\left(x 1, x 2^{\prime}\right)$

The fact that the engineer rather has the road (10 years, 100 cars) paved than the road ( 13 years, 10 cars) can be represented as follows:
III. $\quad(0,100) \leftarrow(10,100)>_{d}(0,10) \leftarrow(13,10) \Leftrightarrow V(10,100)-V(0,100)>V(13,10)-V(0,10)$

Based on I. and III., it applies:
IV. $\quad V(13,100)-V(0,100) \geq V(10,100)-V(0,100)>V(13,10)-V(0,10)$

From IV., one can see that
V. $\quad V(13,100)-V(0,100)>V(13,10)-V(0,10)$.

Now $V$. indicates that a change from $\mathrm{x} 1=0$ to $\mathrm{x} 1=13$ is more valuable when $\mathrm{x} 2=100$ than when $\mathrm{x} 2=10$. Thus, x 1 is not difference independent of x 2 .

By rearranging V., one obtains
VI. $\quad V(13,100)-V(13,10)>V(0,100)-V(0,10)$.

Now VI. Indicates that a change from $\mathrm{x} 2=10$ to $\mathrm{x} 2=100$ is more valuable when $\mathrm{x} 1=13$ than when $\mathrm{x} 1=0$. Thus, x 2 is not difference independent of x 1 .

