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• Present the optimal discrete-time estimator.

• Discuss the difficulty in implementing it in practice due to memory  
requirements and computational requirements.

• Discuss numerical implementation of the optimal discrete-time 
estimator.

• Derive the suboptimal filter known as the extended Kalman Filter 

STATE ESTIMATION FOR

NONLINEAR DYNAMIC SYSTEMS
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ESTIMATION IN NONLINEAR STOCHASTIC SYSTEMS

The general state space model for discrete-time stochastic systems

At least one of the above two functions has to be nonlinear.

The noise sequences,  white with known pdf and mutually independent. 
The initial state,  a known pdf and  be independent of the noises. 

The optimal nonlinear state estimator consists of the computation of the 
conditional pdf of the state x(k) given all the information available at time k: 
the prior information about the initial state, the intervening

inputs and the measurements through time k.
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The Optimal Estimator

The information set available at k ,

growing with k

For a stochastic system, an information state is a function of the 
available information set that completely summarizes the past of the 
system in a probabilistic sense.

As shown in the next subsection, the conditional pdf

satisfies this requirement if the two noise sequences (process and 
measurement) are white and mutually independent.

The optimal estimator consists of the recursive functional relationship 
between the information states pk+1 and pk, and is given by



Remarks

1. The implementation requires storage of a pdf, equivalent to an infinite-

dimensional vector. The problem of carrying out the integration 

numerically.

2. In spite of these difficulties, the use of the information state has the 

following advantages:

a. It can be approximated over a grid of points or by a piecewise analytical function.

b. It yields directly the MMSE estimate of the current state — the conditional mean —

and any other desired inf. (its conditional variance).

3. For linear systems with Gaussian white noises, the functional 

recursion becomes the Kalman Filter, the state’s conditional mean and 

covariance define sufficient statistic

4. If a system is linear but the noises and/or the initial condition are not

Gaussian, then, in general, there is no simple sufficient statistic and the

recursion has to be used to obtain the optimal MMSE estimator.
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Proof of the Recursion of the Conditional Density of the State

Bayes’ formula

If the measurement noise is white in the following sense: w(k + 1) 
conditioned on x(k + 1) has to be independent of w(j), j ≤ k and of 
v(j), j ≤ k, then

the state prediction pdf (a function, rather than the point prediction —
the predicted value — as in the linear case)

Chapman-Kolmogorov equation
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Proof continues

the process noise sequence is white and independent  of the 
measurement noises in the following sense: v(k) conditioned on x(k) 
has to be independent of v(j − 1), w(j), j ≤ k. The whiteness of v(k) is 
equivalent to requiring the state vector x(k) to be a Markov process.

state transition pdf

since the input u(k) enters the system after the realization of x(k) has 
occurred

it follows

where φ is a transformation — an operator — that maps the function pk

into another function, namely, the state prediction pdf.
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Proof continues

the functional recursion for the information state can be written 
with another transformation ψ that maps pk into pk+1

end of proof.



10/11/2022
AS-84.2161 

8

The Information State
pk is an information state according to the definition of the previous 

subsection, i.e., that the pdf of any future state at j > k depends only 
on pk and the intervening controls

where the whiteness of the process noise sequence and its 
independence from the measurement noises have been used 

μ denotes the transformation that maps pk and the known inputs into 
the pdf of a future state x(j)
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it follows that Ik is summarized by pk.

Therefore, the whiteness and mutual independence of the two noise 
sequences is a sufficient condition for pk to be an information 
state. It should be emphasized that the whiteness is the crucial 
assumption

The above conditions are equivalent to the requirement that x(k) be an

incompletely observed Markov process — a Markov process observed

partially and/or in the presence of noise.

If, for example, the process noise sequence is not white, it is obvious 
that pk does not summarize the past data. In this case the vector x 
is not a state anymore and it has to be augmented.

This discussion points out the reason why the formulation of stochastic 
estimation and control problems is done with mutually independent 
white noise sequences.



Example of Linear vs. Nonlinear 

Estimation of a Parameter
Consider an unknown parameter x with a prior pdf uniform in the interval 

[x1, x2]

1(·) denotes the unit step function.

A measurement

where w is independent of x and uniformly distributed within the interval 

[−a, a]

10/11/2022
AS-84.2161 

10



10/11/2022
AS-84.2161 

11

The Optimal MMSE Estimator
the optimal MMSE estimator (the conditional mean)

the likelihood function of x given z — the pdf of z conditioned on x 
— is

the conditional pdf of x given z — a posterior pdf



The conditional pdf  is seen to be uniform in the interval, which is

the intersection of the interval [x1, x2] from the prior and the interval 

[z−a, z+a] — the feasibility region of x given z.

The MMSE estimator of x given z (i.e., its exact conditional mean) 

is

Note that this estimator is a nonlinear function of the measurement z.

The conditional variance of this estimator is, for a given z

Note that the accuracy of the optimal estimate, measured in terms of 

its variance, is measurement-dependent — it depends on the 

measurement z. 
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The LMMSE Estimator
The linear MMSE estimator of x in terms of z
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continues

The MSE corresponding to the estimator

Comparison of the Errors: Optimal vs. Best Linear

The comparison between the errors obtained from the optimal and best 
linear methods cannot be made between Covariances (or MSE) 
since the optimal case  is a function of the observations. 

It has to be made between averaged over all the possible 
measurements z.
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Comparison of the Errors: 
Optimal vs. Best Linear

The average covariance 
associated with the optimal 
estimate is

the comparison of these two 
estimators’ variances for some 
numerical values. The interval 
over which x is uniformly 
distributed is x2 − x1 = 1, that 
is, its “prior” variance was 1/12 
= 0.0833. The measurement 
ranged from very accurate for 0 
< a << 1, to very inaccurate —
practically noninformative — for 
a >>1.



Conclusion of the comparison

the benefit from the nonlinear estimation over the linear one is 

disappointingly modest in this case: 

It ranges from negligible — 1% for the inaccurate measurement 

considered — to 6% for the accurate measurement; its maximum, 

which occurs in the midrange, is about 15% in variance. 

No general conclusions can be drawn from the above toy/academic 

example — each problem requires its own evaluation. Nevertheless, it 

is an indication that in some problems the benefit from nonlinear 

estimation can be quite limited.
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Estimation in Nonlinear Systems with 

Additive Noise
the system with dynamics

for simplicity, it is assumed that there is no input/control, and the noise

is assumed additive and white, with pdf

The measurement

measurement noise is additive, white with pdf 

and independent from the process noise

The initial state has the prior pdf p[x(0)] and is assumed to be 

independent from the two noise sequences
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Prediction

the predicted pdf follows

In view of the additivity of the process noise

where μj are the weighting coefficients of the numerical integration
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Update

The numerical implementation

normalization constant

numerically
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Remarks

The number of grid points for a state of dimension nx, with m points per 

state component, is  

This curse of dimensionality is the major stumbling block in 

making numerical techniques practical due to the ensuing heavy 

storage and computational requirements.

Another issue is the selection of the grid, which evolves in time. The 

points have to cover a region in the state space outside which the 

probability mass is negligible.
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Optimal Nonlinear Estimation —

Summary
Given a system described by

1. dynamic equation perturbed by white process noise and

2. measurement equation perturbed by white noise independent of the process noise, 

with at least one of these equations nonlinear, the estimation of the system’s

state consists then of the calculation of its pdf conditioned on the entire available

information: the observations, the initial state information and the past inputs.

This conditional pdf has the property of being an information state, that is,

it summarizes probabilistically the past of the system.

The optimal nonlinear estimator for such a discrete-time stochastic dynamic

system consists of a recursive functional relationship for the state’s conditional

pdf. This conditional pdf then yields the MMSE estimator for the state — the

conditional mean of the state.
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This nonlinear estimator has to be used to obtain the conditional mean of the

state unless the system is linear Gaussian: Both the dynamic and the 

measurement equations are linear and all the noises and the initial state are 

Gaussian.

If the system is linear Gaussian, this functional recursion becomes the 

recursion for the conditional mean and covariance, the Kalman filter.

Unlike the linear case, in the nonlinear case, the accuracy of the estimator

is measurement-dependent. The numerical implementation of the nonlinear 

estimator on a set of grid points in the state space can be very demanding 

computationally — it suffers from the curse of dimensionality: The memory 

and computational requirements are exponential in the dimension of the state
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THE EXTENDED KALMAN FILTER

• Very limited feasibility of the implementation of the optimal filter, the 

functional recursion, suboptimal algorithms are of interest.

• The recursive calculation of the sufficient statistic consisting of the 

conditional mean and variance in the linear-Gaussian case is the 

simplest possible state estimation filter. 

• As indicated earlier, in the case of a linear system with non-

Gaussian random variables the same simple recursion yields an 

approximate mean and variance.

• A framework similar is desirable for a nonlinear system. Such an 

estimator, called the extended Kalman filter (EKF), can be obtained 

by a series expansion of the nonlinear dynamics and of the 

measurement equations.
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The (first-order) EKF is based on

• Linearization — first order series expansion — of the 

nonlinearities (in the

dynamic and/or the measurement equation)

• LMMSE estimation

The second-order EKF relies on a second-order expansion, 

that is, it includes second-order correction terms.
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Modeling Assumptions

for simplicity, it is assumed that there is no control, and the 

noise is assumed additive, zero mean, and white

the measurement noise is additive, zero mean, and white

The initial state is assumed to be 

uncorrelated with the two noise sequences.
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The estimate at time k, an approximate conditional mean

and the associated covariance matrix 

Strictly speaking, P(k|k) is the MSE matrix rather than the covariance

matrix in view of the fact that the estimate is not the exact conditional 

mean.

Above implies that the estimation error is approximately zero

mean. 

Another assumption that will be made is that the third-order moments of 

the estimation error are approximately zero — this is exact in the case of 

zero-mean Gaussian random variables.



Derivation of the EKF, State Prediction

The vector Taylor series expansion, 

+HOT

the Jacobian of the vector f, evaluated at the latest estimate of the state.

ei is the ith nx-dimensional Cartesian basis vector (ith component unity, the 

rest zero)

The Hessian of the ith component of f and HOT represents the higher-order 

terms
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Note that, given the data Zk, both the above Jacobian and the Hessian 

are deterministic quantities—only x(k) and v(k) are random variables

The predicted state to time k +1 from time k is obtained by taking the 

expectation  conditioned on Zk and neglecting the HOT

The first order term is (approximately) zero mean and thus vanishes

The state prediction error

the HOT have already been dropped
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Multiplying the above with its transpose and taking the expectation 

conditioned on Zk yields the state prediction covariance (actually, the 

MSE matrix)

The state prediction includes the second-order “bias correction” 

term.

This is dropped in the first order EKF.

The prediction covariance contains a fourth-order “bias correction” 

term obtained from the squaring of the second order term.

The first-order version  is the same as in the linear

filter — the Jacobian fx(k) plays the role of the transition matrix F(k).
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Derivation of the EKF, Measurement Update

Similarly, the predicted measurement is, for the second-order filter

ei is the ith nz-dimensional ith Cartesian basis vector 

The measurement prediction covariance or innovation covariance

or residual covariance — really MSE matrix —

the Jacobian of h
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the Hessian of its ith component

Modifications for the First-Order EKF

The second order “correction” term in and the corresponding fourth 

order term are dropped in the first-order EKF. 

The first-order version s the same as in the linear filter — the Jacobian 

hx(k) plays the role of the measurement matrix H(k).

State Update

State Update the expression of the filter gain, the update equation for 

the state and its covariance are identical to those from the linear filter

10/11/2022
AS-84.2161 

31



10/11/2022
AS-84.2161 

32

Overview of 

the EKF 

Algorithm



Overview of the EKF Algorithm

• The main difference from the Kalman Filter is the evaluation of the 

Jacobians of the state transition and the measurement equations.

• Due to this, the covariance computations are not decoupled anymore 

from the state estimate calculations and cannot be done offline.

• The linearization (evaluation of the Jacobians) can be done, as 

indicated here, at the latest state estimate for F and the predicted 

state for H. 

• Alternatively, it can be done along a nominal trajectory — a deterministic 

precomputed

• trajectory based on a certain scenario — which allows offline 

computation of the gain and covariance sequence.
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A Cautionary Note about the EKF

The use of the series expansion in the state prediction and/or in the measurement 

prediction has the potential of introducing unmodeled errors that violate some 

basic assumptions about the prediction errors. :

1. The prediction errors are zero mean (unbiased).

2. The prediction errors have covariances equal to the ones computed by

the algorithm.

In general, a nonlinear transformation will introduce a bias and the covariance

calculation based on a series expansion is not always accurate. 

There is no guarantee that even the second-order terms can compensate for

such errors. Also, the fact that these expansions rely on Jacobians (and Hessians

in the second-order case) that are evaluated at the estimated or predicted state

rather than the exact state (which is unavailable) can cause errors.
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