Exercise and Homework Round 5

These exercises (except for the last) will be gone through on Friday, October 14, 12:15-14:00 in the exercise session. The last exercise is a homework which you should return via mycourses by Friday, November 4 at 12:00.

Exercise 1. (Gradient descent with line search)

It is also possible to use line search with gradient descent algorithm. Write down the pseudo-code for this algorithm when an exact line search (grid search) is used.

Exercise 2. (Gauss-Newton with linear-search for scalar models)

Let us consider a scalar nonlinear model

$$
\begin{equation*}
y=g(x)+r \tag{1}
\end{equation*}
$$

and the corresponding least squares cost function

$$
\begin{equation*}
J(x)=(y-g(x))^{2} . \tag{2}
\end{equation*}
$$

Further assume that $J(x)$ has a unique global minimum x^{*}.
(a) Write down the equation for scaled Gauss-Newton iteration (with scaling parameter γ) for this model.
(b) Assume that if we start the iterations from point $\hat{x}^{(0)}$ such that the derivative at that point $g^{\prime}\left(\hat{x}^{(0)}\right) \neq 0$. Show that there exists a scaling parameter γ such that the algorithm reaches x^{*} on a single step.
(c) What does this imply on the (exact) line-search Gauss-Newton algorithm convergence for this model? Does this conclusion extend to multidimensional models?

Exercise 3. (Gauss-Newton with line search and Levenberg-Marquardt

Consider the model

$$
\begin{equation*}
y_{n}=g(\mathbf{x})+r_{n}, \tag{3}
\end{equation*}
$$

where $n=1, \ldots, N, r_{n} \sim \mathcal{N}(0, R)$, and

$$
g(\mathbf{x})=\left[\begin{array}{ll}
\alpha & \sqrt{x_{1}} \tag{4}\\
\beta & \sqrt{x_{2}}
\end{array}\right] .
$$

(a) Simulate data from this model with suitable parameters and implement Gauss-Newton algorithm with exact line search for minimizing the cost function.
(b) Implement a Levenberg-Marquardt algorithm for this model.
(c) Discuss the relative convergence rate of the methods.

Homework 5 (DL Friday, November 4 at 12:00)

Implement Gauss-Newton with line search for minimizing the cost function $J(x)=(1.1-\sin (x))^{2}$. Use grid search with grid $\gamma \in[0,1 / 10,2 / 10, \ldots, 1]$. Hint: Beware of the singularity of the derivative at the minimum.

