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This is a brief summary of the key concepts, notation and formulas presented in
the course. It is not intended to replace the coursebook or lecture notes.
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1 Notation
• The Planck constant is generally denoted by ℎ and the reduced Planck

constant by ℏ = ℎ/2c . In this course, ℏ occurs more often than ℎ.

• We typically denote the mass of a particle by<.

• Angular frequency is typically denoted by l . Note that the frequency 5 is
different from angular frequency. They are related by 5 = l/(2c). The SI
unit of frequency is Hz, but Hz is not the unit of angular frequency!

• In the case of a one-dimensional harmonic oscillator, the classical potential
energy is given by + (G) = <l2G2/2 provided that G is chosen as the free
coordinate of the system.

• In this course, a hat on top of a symbol indicates that it is an operator acting
on quantum states. For example, the Hamiltonian operator is typically
denoted by �̂ . Always use a hat on top of operators with the exception that
no hat is used on top of bra or ket vectors, nor the combinations of them.

• In Dirac notation, a quantum state is denoted by the ket vector |k 〉. The kets
are independent of any particular representation basis and the same state
can be represented in many different bases. For example, we can represent
a state vector using the eigenstates |G〉 of the position operator Ĝ as

|k 〉 =
∫
〈G |k 〉|G〉 dG =

∫
k (G) |G〉 dG . (1)

The amplitude k (G) is a wave function. In general, using any set of basis
states {|q=〉}, we may express |k 〉 as

|k 〉 =
∑
=

|q=〉〈q= |k 〉 =
∑
=

〈q= |k 〉|q=〉 =
∑
=

0= |q=〉, (2)

where 0= = 〈q= |k 〉 is the amplitude of state |q=〉. Note that in the case of
continuous bases such as that of Ĝ , the summation should be interpreted as
an integral.

• The inner product for two quantum states is denoted by 〈q |k 〉.

• The notation 〈�̂〉 means the expectation value of the operator �̂, i.e.

〈�̂〉 = 〈k |�̂|k 〉 =
∫

dG k ∗ (G)�̂k (G), (3)

where the last equality provides merely an example, where the whole
Hilbert space can be described by the eigenstates of the position operator.

2 Complex numbers
One way to define the set of complex numbers C is using number pairs. Let
I = (0, 1) and F = (2, 3) be ordered pairs of real numbers 0, 1, 2, 3 ∈ R. Then, we
define addition and multiplication in the following way:

I +F = (0, 1) + (2, 3) B (0 + 2, 1 + 3), (4)
I ·F B IF = (0, 1) · (2, 3) B (02 − 13, 12 + 03). (5)
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Then, we may just denote (0, 1) B 0 + 1i, and recover from the above definitions
the usual relation i2 = (0, 1) · (0, 1) = (−1, 0) = −1. With I = 0 + 1i, we call 0 the
real part of I, Re I = 0 and 1 the imaginary part of I, Im I = 1.

Complex numbers behave as usual in arithmetic with respect to parenthesis.
With I as above andF = 2 + 3i, we have

I +F = 0 + 1i + 2 + 3i = (0 + 2) + (1 + 3)i, (6)

and

IF = (0 + 1i) (2 + 3i) = 02 + 03i + 12i + 13i · i (7)
= 02 + 03i + 12i − 13 = (02 − 13) + (03 + 12)i. (8)

In some sense, it can be helpful to think of the imaginary unit i being "orthogonal"
to the real numbers. With this in mind, a complex number I = 0 + 1i can be
represented as the point (0, 1) on the complex plane, like so:

Im

ReO a

b
z=a+bi

Image from https://commons.wikimedia.org/wiki/File:A_plus_bi.svg under CC-BY-SA 4.0

We define the following useful operations for a complex number I = 0 + 1i,
0, 1 ∈ R:

• Complex conjugate: I∗ = 0 − 1i (sometimes also denoted as Ī). This corre-
sponds to mirroring I along the real axis in the complex plane.

• Magnitude: |I | = |I∗ | =
√
I · I∗ =

√
02 + 12. Sometimes called absolute value

or modulus. This is the length of the "vector" (0, 1) in the complex plane.

• Argument: arg(I) = atan2(1, 0), which is the angle between the real axis
and I in the complex plane, usually denoted by i . Sometimes called phase
or just the angle of I.

Some useful relations:

• I + I∗ = 0 + 1i + 0 − 1i = 20 = 2 Re I

• −i(I − I∗) = −i(0 + 1i − 0 + 1i) = −2i21 = 21 = 2 Im I

• 1/i = (1/i) · (i/i) = i/i2 = i/−1 = −i

The exponential function may be generalized for complex numbers using the
usual definition 4I = exp(I) = ∑∞

:
I:/:! with I ∈ C. From this, it follows that for

purely imaginary ~ = 1i (1 ∈ R), we have

4~ = 41i = cos1 + i sin1. (9)
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(This can be obtained using the series definitions for sin and cos.) This is called
Euler’s formula. This is a very useful relation: we can see from the complex plane
picture that any complex number I can be written as

I = |I | (cos(arg(I)) + i sin(arg(I))) = |I | exp(i arg(I)) = A4 ii , (10)

where A = |I | and i = arg(I). With this andF = B4 i\ , we observe that the product
IF = AB4 i(i+\ ) is equal to I rotated by the angle \ = arg(F) and scaled by B = |F | in
the complex plane. In particular, with B = 1, we see that multiplying by 4 i\ rotates
points in the complex plane by \ , which is very useful in quantum mechanics.

These relations are sufficient for our course, but for example Wikipedia lists a
lot of other important properties.

3 Basic Postulates of Quantum Mechanics
• Postulate I: For every physically measurable quantity (observable or dy-

namical variable) �, there is a corresponding linear Hermitian operator �̂,
such that measurements of � yields eigenvalues of �̂.

• Postulate II: If we measure a certain eigenvalue, the quantum state "col-
lapses" into the corresponding eigenstate of the measured operator.

• Postulate III: The state of the system at any time C is represented by a state
vector |k (C)〉. |k (C)〉 contains all the information needed to describe the
system.

• Postulate IV: The time evolution of the wave function is given by the time-
dependent Schrödinger’s equation:

iℏ
m |k (C)〉
mC

= �̂ |k (C)〉. (11)

4 Time Evolution of a System
The time evolution of the state vector |k (C)〉 of a system is governed by the time-
dependent Schrödinger equation

iℏ
m |k (C)〉
mC

= �̂ |k (C)〉, (12)

where �̂ is the Hamiltonian of the system. A formal solution of |k (C)〉 is given by

|k (C)〉 = e−iC�̂/ℏ |k (C = 0)〉 = *̂ |k (C = 0)〉, (13)

where *̂ = e−iC�̂/ℏ is called the time evolution operator, and the exponential of an
operator �̂ is defined as exp(�̂) = ∑∞

==0 �̂
=/=!. Note that it is often not possible to

find an analytical solution for *̂ .
One-dimensional particle states are often represented using a basis formed by

the eigenstates of the position operator, i.e., a complex valued function k (G, C).
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If the particle experiences the potential + (G), one can write the time-dependent
Schrödinger equation as

iℏ
mk (G, C)
mC

= − ℏ2

2<

m2k (G, C)
mG2

++ (G)k (G, C). (14)

If the system is initially in an eigenstate q= (G) of �̂ , the time evolution is given
by

k (G, C) = q= (G)e−i�=C/ℏ, (15)
where �= is the energy corresponding to q= (G). The initial state can also be a
superposition of the eigenstates of the Hamiltonian operator:

k (G, C = 0) =
∑
=

0=q= (G), (16)

in which case the time evolution is

k (G, C) =
∑
=

0=e−i�=C/ℏq= (G). (17)

5 Eigenstates and eigenvalues

The eigenstates |k=〉 corresponding to any observable $̂ , are the solutions of the
eigenvalue equation

$̂ |k=〉 = 2= |k=〉, (18)
where 2= ∈ R is the eigenvalue. For example, consider the momentum operator in
one dimension in the position basis: ?̂ = −iℏm/mG . Then, the eigenvalue equation

?̂ |k:〉 = ?: |k:〉 (19)

⇒ −iℏ
mk: (G)
mG

= ?:k: (G) (20)

has the solutionk: (G) = exp(i:G), with eigenvalues ?: = ℏ: .

6 Measurement probabilities and superposition
The state |k 〉 can be represented by a linear superposition of eigenstates |q=〉

|k 〉 =
∑
=

0= |q=〉, (21)

where 0= is the amplitude corresponding to the state |q=〉. When we perform
a measurement on the system, the probability of finding it in one particular
nondegenerate eigenstate |q=〉 is given by

%= = |〈q= |k 〉|2 = |0= |2. (22)

The expectation value of an operator $̂ with respect to a state |k 〉 is defined as
〈k |$̂ |k 〉. In the position representation

〈k |$̂ |k 〉 =
∫ ∞

−∞
k ∗ (G)$̂k (G)dG . (23)

The standard deviation Δ$̂ can be calculated from the expected value for variance

(Δ$̂)2 = 〈k |$̂2 |k 〉 − 〈k |$̂ |k 〉2. (24)
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7 Vectors and matrices
Matrix representation: Consider a state vector expanded in a given basis |q=〉

|k 〉 =
∑
=

0= |q=〉. (25)

The information about the state is encoded in the amplitudes 0= , which may also
be written as a column vector

k̄ =


01
02
...

0#


(26)

and corresponding bra is a row vector

k̄ † =
(
0∗1, 0

∗
2, . . . , 0

∗
#

)
. (27)

The "dagger operation" or just "dagger" † means to transposition and complex
conjugation (i.e. you change the columns to rows and you take the complex
conjugate of each element). Consider the operator $̂ , that converts the statek to q
$̂ |k 〉 = |q〉 = ∑

= 1= |q=〉, which has some amplitudes 1= . The same can be written
in vector form as

$̂ |k 〉 =
∑
=

$<=0= |q<〉 =̂


$11 $12 . . . $1#

$21 $22 . . . . . .
... . . . . . . . . .

$#1 . . . . . . $##



01
02
...

0#


=


11
12
...

1#


. (28)

Here =̂ stands for represented by. The operator $̂ in the matrix form is

$̂ =̂


$11 $12 . . . $1#

$21 $22 . . . . . .
... . . . . . . . . .

$#1 . . . . . . $##


, (29)

and the coefficients 1< of |q〉 are given by the sum
∑
=$<=0= , according to the

rules of standard matrix-vector multiplication.
Let’s choose |k 〉 = |q=〉, which is equivalent to 08 = X8,= , and 〈q | = 〈q< | and

0∗9 = X 9,< .

〈q< |$̂ |q=〉 =̂ (0, 0, . . . , 1< . . . 0)


$11 $12 . . . $1#

$21 $22 . . . . . .
... . . . . . . . . .

$#1 . . . . . . $##





0
0
...

1=
...


= $<= .

(30)
One can represent the operator by calculating the corresponding matrix $<= =

〈q< |$̂ |q=〉 for all< and for = values. If operator $̂ is Hermitian then the matrix
elements$=,< = $∗<,= .

6



The eigenvalues and states corresponding to any Hamiltonian �̂ can be ob-
tained from the matrix equation

�̂ |k 〉 = � |k 〉 =̂


�11 �12 . . . �1#

�21 �22 . . . . . .
... . . . . . . . . .

�#1 . . . . . . �##



01
02
...

0#


=


�01
�02
...

�0#


, (31)

and
det(� − �� ) = 0, (32)

where � is the identity matrix.

8 Commutators
In general, for two operators �̂ and �̂, we have �̂�̂ ≠ �̂�̂. We often want to talk
about "how much" �̂�̂ differs from �̂�̂. To this end, we define the commutator
of the operators as [�̂, �̂] = �̂�̂ − �̂�̂. If �̂ and �̂ commute, i.e. �̂�̂ = �̂�̂, we
have [�̂, �̂] = 0. Note also that [�̂, �̂] = −[�̂, �̂]. As an example, the commutator
between the position and the momentum operators is

[Ĝ, ?̂] = iℏ. (33)

This is an important commutator, called the canonical commutation relation.
When the operators �̂ and �̂ commute, they have a common set of eigenstates,

provided only that each has a complete set of eigenstates. If |q0〉 is an eigenstate
of �̂ with eigenvalue 0,

�̂|q0〉 = 0 |q0〉, (34)
then we have

�̂�̂ |q0〉 = �̂�̂|q0〉 = 0�̂ |q0〉. (35)
Thus �̂ |q0〉 is also an eigenstate of �̂, with the same eigenvalue 0.

The generalized uncertainty principle is defined in terms of a commutator:

Δ�̂Δ�̂ ≥ 1

2
|〈[�̂, �̂]〉|, (36)

where Δ�̂ =

√
〈�̂2〉 − 〈�̂〉2 is the standard deviation.

9 Time evolution of expectations values / Ehrenfest
principle

In a systemwith Hamiltonian �̂ , the time evolution of the expectation value of an
operator $̂ is given by

3 〈$̂〉
3C

=
i

ℏ

〈
[�̂, $̂]

〉
+

〈
m$̂

mC

〉
. (37)

If the operator commutes with the Hamiltonian operator and does not explicitly
depend on time, i.e., the right-hand side of Eq. (37) is zero, the expectation value
〈$̂〉 is a constant of motion.
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Ehrenfest’s principle follows from the above equation. It says that the classical
equations of motion can be obtained from quantum mechanics by calculating
the operator expectation values. For example, consider a particle moving in the
potential+ (G), we obtain the equations of motion

3 〈?̂〉
3C

= −
〈
m+ (G)
mG

〉
= 〈� 〉, (38)

and
3 〈Ĝ〉
3C

=
〈?̂〉
<
. (39)

10 Harmonic oscillator
The Hamiltonian for a harmonic oscillator is given by

�̂ =
?̂2

2<
+ <l

2

2
Ĝ2. (40)

The so-called lowering (or annihilation) and raising (or creation) operators are
defined as

0̂ =

√
<l

2ℏ

(
Ĝ + i?̂

<l

)
, (41)

and

0̂† =

√
<l

2ℏ

(
Ĝ − i?̂

<l

)
. (42)

From the canonical commutation relation, it follows that [0̂, 0̂†] = 1. Using this,
the Hamiltonian operator (40) can be written as

�̂ = ℏl

(
0̂†0̂ + 1/2

)
= ℏl

(
#̂ + 1/2

)
, (43)

where #̂ = 0̂†0̂ is the number operator. The eigenvalues of �̂ are

�= = ℏl (= + 1/2), (44)

where = = 0, 1, 2 . . .. The eigenstates of the Hamiltonian operator are also the
eigenstates of the number operator. Using creation operators, the eigenstate can
be represented in the following form

|q=〉 =
1
√
=!
(0̂†)= |q0〉, (45)

where |q0〉 is the state with lowest energy, called the ground state. These states
are orthonormal:

〈q= |q<〉 = X=< . (46)

Usually the eigenstates of a harmonic oscillator are denoted justwith the ket vector
|=〉. The result of operating with the annihilation operator on the eigenstate |=〉 is

0̂ |=〉 =
√
= |= − 1〉, (47)
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while for the creation operator we have

0̂† |=〉 =
√
= + 1|= + 1〉. (48)

This is where the names come from, 0̂ lowers and 0̂† raises the energy of the
oscillator by one quantum of energy ℏl . Note that the operators 0̂ and 0̂† can be
written as a sum of outer products of the form |= − 1〉〈= | and |=〉〈= − 1|:

0̂ =

∞∑
==1

√
= |= − 1〉〈= |, (49)

0̂† =
∞∑
==0

√
= + 1|= + 1〉〈= |. (50)

11 Scattering from a 1D potential
A general method for solving 1D scattering problems:

1. In the regions (=) where the energy is greater than the potential value += ,
write an oscillating solution

k= (G) = �=ei:=G + �=e−i:=G , (51)

where := =
√

2<(� −+=)/ℏ2.

2. In the regions (=) where the energy is less than the potential value += the
solution take form

k= (G) = �=e^=G + �=e−^=G (52)

where ^= =
√

2<(+= − �)/ℏ2.

3. If the particle current comes from the left, the solution at the far left is

k0 (G) = ei:G + 'e−i:G (53)

where ' is the reflection coefficient, : =
√

2<�/ℏ2 and the second term
describes the reflected part.

4. At the far right, the solution is

k# (G) = ) ei:# G , (54)

which describes the part tunneled through the potential barrier.

5. At all boundaries of GB ,

• the wave function should be continuous, limn→0k (GB − n) = k (GB + n).
• thefirst derivativeof thewave function shouldbe continuous, limn→0

3k (GB−n)
3G

=
3k (GB+n)

3G
. Note that the derivative need not be continuous at points

where the potential is infinite (for example, in the case of the delta-
function potential X (G)).
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6. This gives a linear set of equations for the amplitudes ',) , · · ·�=, �= .

7. The transmission ) and reflection coefficient ' are the ratios of transmitted
or reflected current density to incoming current. In the one-dimensional
case, the current density can be obtained from the wave function

� =
ℏ

2<i

[
k ∗
mk

mG
−k mk∗

mG

]
. (55)

For example, if particles whose wave functions are plane waves�1ei:1G−il1C

strike a potential barrier, then the current density is � = ℏ:1 |�1 |2/<.

12 Qubit
Aqubit can refer either to a physical system or to amathematical construction. We
can model a qubit with a two-level quantum system. All possible quantum states
of a qubit can be represented in an orthonormal basis {|0〉, |1〉}. The Hamiltonian
has just two eigenvalues �0 and �1 corresponding to eigenstates |0〉 and |1〉. Thus
we may write

�̂ = �0 |0〉〈0| + �1 |1〉〈1|. (56)

Bloch sphere representation of the state: Any pure qubit state |k 〉 = U |0〉 + V |1〉
with |U |2 + |V |2 = 1 can be written in the following way:

|k 〉 = cos (\/2) |0〉 + eiq sin (\/2) |1〉,

where 0 ≤ \ ≤ c and 0 ≤ q < 2c are parameters that equal the polar and the
azimuthal angle, respectively, of the Bloch sphere representation of the state,
i.e., the Bloch sphere representation of |k 〉 is given by the Bloch vector ®k =

(cosq sin\, sinq sin\, cos\ ).

13 Density matrix
Given a quantum state |k 〉, we can form the density matrix

d̂ = |k 〉〈k |, (57)

containing the same information. The densitymatrix has a few general properties:

1. Tr d̂ = 1.

2. d̂ is Hermitian.

3. Positivity, that is, all eigenvalues of d̂ are greater than or equal to zero.

If we know the state |k 〉 of the system, the density matrix does not seem very
useful. However, there are often situations with degrees of freedom which we
can’t keep track of. Thus, the "information" contained in the system leaks into
degrees of freedom unknown to us. In such a situation, the reduced density
matrix will be useful.
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Consider a composite system composed of two subsystems� and �. The total
density matrix of the whole system d̂ = |k 〉〈k | and the reduced density matrix in
section � (this is the part of the whole system under consideration) is

d̂� = Tr� d̂, (58)

where Tr� means a "partial trace" operation.

14 Periodic potentials: Bloch’s theorem
A potential+ is periodic with period 3 if

+ (G + 3) = + (G). (59)

In this case, the eigenstates of the Hamiltonian operator �̂ = ?̂2/2< ++ (G) are of
the form

q: (G) = ei:GD: (G), (60)
where D: (G + 3) = D: (G) is periodic for the same period as the potential. These
eigenstates are called Bloch states. This follows from the fact that the eigenstates
of the translation operator �̂

�̂ 5 (G) = 5 (G + 3) (61)

are q = ei:GD (G), whereD (G +3) = D (G). When the potential is periodic, [�̂, �̂ ] = 0
and the eigenstates of �̂ are also eigenstates of �̂ .

15 Fourier transform
The Fourier transform ofk (G) is defined as

q (:) = 1
√

2c

∫ ∞

−∞
dG e−i:Gk (G). (62)

The inverse transform is in turn

k (G) = 1
√

2c

∫ ∞

−∞
d: ei:Gq (:). (63)

The initial constant is the same in both the forward and inverse transforms, so that
q (G) andk (G) remain properly normalized and thus as acceptable wavefunctions.
If the transformations are between the position and momentum instead of the
wave vector : , we have

q (?) = 1
√

2cℏ

∫ ∞

−∞
dG e−i?G/ℏk (G) (64)

and
k (G) = 1

√
2cℏ

∫ ∞

−∞
d? ei?G/ℏq (?). (65)

The Fourier transform of the function 5 (C) of time C is a function of the angular
frequency � (l)

� (l) = 1
√

2c

∫ ∞

−∞
dC eilC 5 (C) (66)
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and
5 (C) = 1

√
2c

∫ ∞

−∞
dl e−ilC� (l). (67)
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