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1) Energy conservation: “J/s thinking” 

2) Fourier’s law

3) Newton’s cooling law 

4) Energy transport equation – convection/diffusion equation

5) Momentum transport equation – Navier-Stokes equation

On the heat transfer course, we have “5 friends” 
i.e. 5 main principles that are used to explain

heat transfer phenomena  
 



  

Lecture 1.1 Theory and analysis: Energy and 
mass conservation, Newton’s cooling law, 

Fourier’s law and conduction (1d heat equation)

ILO 1: Student can derive and explain physical origin of the heat 
equation, describe solution behavior by example solutions and 
boundary conditions, and solve the heat equation (1d) and 
Newton’s cooling law (0d) numerically in Matlab. 



  

Remarks on temperature, thermal energy and 
transport mechanisms

Temperature
● For gases or liquids: temperature is actually closely related to the speed of the 

molecules on the molecular scales (molecules bouncing around). Molecular speeds are 
much higher (e.g. 2000-10000 m/s) than macroscopic fluid flow velocities (e.g. 0.1-10 m/s) 
in cooling/heating applications. 

● For solids: temperature is related to the vibrational motion (velocity around an average 
position) of molecules/atoms in a lattice structure. 

Energy
● Fluid=gas or liquid

● Fluids have kinetic energy and thermal energy. On the course we assume that 

kinetic energy does not change form and are typically only interested in thermal energy 
changes  dE=mcpdT

● Main mechanisms of thermal energy transport: convection, diffusion (conduction), 
radiation. 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fcommons.wikimedia.org%2Fwiki%2FFile%3AIdeal_Gas_Law.jpg&psig=AOvVaw05UbJ19Q3ydzSQ6WXX-1FJ&ust=1603788775676000&source=images&cd=vfe&ved=0CAkQjhxqFwoTCMia_vPw0ewCFQAAAAAdAAAAABAL

Mean squared molecule velocity relates to
temperature. 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fcommons.wikimedia.org%2Fwiki%2FFile%3AIdeal_Gas_Law.jpg&psig=AOvVaw05UbJ19Q3ydzSQ6WXX-1FJ&ust=1603788775676000&source=images&cd=vfe&ved=0CAkQjhxqFwoTCMia_vPw0ewCFQAAAAAdAAAAABAL


  

Energy conservation: “J/s” thinking

● Heat transfer course is largely involved with thermal 
energy balance considerations for a system. 

● [Energy] = J = kgm2/s2 [Power] = W = J/s

● Typically we consider heating/cooling of fluid and/or solid 

● Fluids = gas/liquid are assumed to be of constant density.

Heat = Power = J/s 

Cool fluid 
enters: J/s 

Heated fluid 
exits: J/s 

Heat losses: J/s 

System



  

Example: Thermal energy and mass 
conservation for fluid flowing through heating 

system
(assume here: losses small)

● Mass conservation (kg/s): 

● Energy conservation (J/s): 

Heat = Power = J/s 

Cool fluid 
enters: J/s 

Heated fluid 
exits: J/s 

System

ρU in A in=ρU out Aout=ṁ

c p ρU out Aout T out−c p ρU in A in T in=Pheat c p ṁ ΔT=Pheat=q



  

Even convective heat transfer problems involve 
typically conduction: Thermal conductivity vs diffusivity

k=αρ c p
thermal conductivity

thermal diffusivity

specific heat

density

[cp]=J /kg⋅K  [ρ]=kg /m3  [α]=m2/ s



  

Some thermal properties for air, water, 
aluminum and copper

Substance Density
[kg/m³]

Specific heat
[kJ/kgK]

Thermal 
conductivity 
[W/mK]

Thermal 
diffusivity [m²/s]

Air 1.2 1.007 0.026 ~1.6·10⁻⁵

Water 1000 4.217 0.569 ~10⁻⁶

Aluminum 2700 0.900 237 ~0.97·10⁻⁴

Copper 8933 0.385 401 ~1.2·10⁻⁴

Iron 7870 0.447 80.2 ~10⁻⁵

Table: Some material property estimates close to NTP conditions (see: Inc.deWitt Appendix) 



  

Water vs air as coolants

● By Fourier’s law the heat flux depends on temperature gradient 
and thermal conductivity

● For a given temperature gradient, heat flux ratio and thermal capacitance
ratios are:  

● These matters explain why water is much more efficient heat exchange 
fluid than air offering e.g. more compact heat exchanger (fin) design 

● Air and water are by far the most common heat transfer fluids

kwater

kair

≈22
ρwater c p , water

ρair c p , air

≈3500



  

Ordinary differential equations 
vs partial differential equations

● Example ODE: 

Initial condition:

● Example PDE:

Initial condition       Boundary condition (here fixed values)

∂ϕ

∂ t
+u

∂ϕ

∂ x
=ν

∂2 ϕ

∂ x2 , 0<x< L

dy
d t

=− y (t) / τ , τ =const.

y (t=0)= y o

ϕ (x , t=0)=ϕ o(x ) ϕ (x=0 , t)=ϕ 1,ϕ (x=L ,t )=ϕ 2

Here: solution to an ODE/PDE gives

ODE → the unknown function y=y(t) which 
could represent at given time e.g. average 
radioactivity of an object,  average 
temperature, average concentration, … 

PDE → the unknown function φ=φ(x,t) 
which could represent at given time and  
point e.g. radioactivity, temperature, …  



  

Example ordinary differential equation

• A storage box filled with air is insulated at initial temperature To and heat 

escapes via glass window at rate q ([q]=W). Average  temperature T=T(t)=?

E ( t=0)=c p mT o

mc p
dT
dt

=−q

Δ E=c p mΔT =q Δ t

dT=
−q
mc p

dt

T (t )=
−q
mcp

t+T o

q

∫T o

T
dT=−∫0

t q
mc p

dt



  

Newton’s cooling law

• Newton's cooling law: Rate of change of heat (W=J/s) for an object is proportional to 
temperature difference between the object and its surroundings.

• The temperature T=T(t) could represent e.g. the average temperature of a beverage in the fridge. 

• h = heat transfer coefficient (depends on air flow around the object)

• As = object surface temperature 

• T∞ = ambient temperature assumed constant here 

q=hA s(T s−T∞ )

[q]=J / s ,[m ]=kg , [c p]=J / kg⋅K ,[T ]=K , [h]=W / m2 K ,[ A s]=m2

mc p
dT
dt

=−hA s (T−T ∞)



  

Fourier’s law

• Fourier’s law: Heat flux results from a temperature gradient.

• Fourier’s law in 1d: 

• Heat rate vs heat flux:

q ' '=−k ∇ T

[q ' ' ]=W /m2 ,[T ]=K , [k ]=W /m K ,[∇ T ]=K /m

q ' ' =−k
∂T
∂ x

=−k
ΔT
Δ x

[q]=W , q=q ' ' A



  

Temperature levels across a window

Remark 1: if we know surface temperatures 
T

1 
and T

2 
on both sides of a window it is easy 

to calculate escaping heat flux using Fourier’s law.
But, in practice we seldom know those surface
temperature values.  

Remark 2: T
1 
and T

2 
do not correspond to the 

indoor room temperature and outdoor temperature
values. Also airflow on boths sides of the windows
will affect the actual surface temperature 
values. 

Remark 3: It is easy to measure T
room 

and T
out

 
  



  

Power exiting
[W/m²]

Power entering
[W/m²]

∆x

∆z

∆y

Consider heat conduction in 1d e.g. in metal rod or through the window. 
Divide the 1d object into small elements and carry out energy balance analysis 

for 1 of those elements. Assume: no heat losses. 



  

Derivation of heat equation: 
Next we apply energy conservation law for a small infinitesimal 

volume assuming conduction only 
(e.g.1d metal rod)

ρcp ΔT (x , t)Δ x Δ y Δ z=[k
∂T (x+Δ x /2 , t )

∂ x
−k

∂T (x−Δ x /2 ,t)
∂ x

]Δ y Δ zΔ t

Energy change in a short
time [J]

Power flux entering
[W/m²] i.e. Fourier’s law

Power flux exiting
[W/m²] i.e. Fourier’s law

Then: Divide both sides by ΔxΔyΔzΔt and take the limit when all 
Δ-variables → 0 → We get the heat equation.

Power exiting
[W/m²]

Power entering
[W/m²]

∆x

∆z

∆y

xx-∆x/2 x+∆x/2



  

Heat Equation

● Heat equation is a partial differential equation describing heat diffusion
● Solution of heat equation offers temperature distribution in a solid or 

fluid (gas or liquid) as a function of space and time i.e. T=T(x,t)

● Important: Heat equation above is a general 1d energy conservation law
when only heat conduction i.e. diffusion is taken into account.   

● Note: If second space derivative is positive/negative, then function T has 
a local minimum/maximum and temperature changes towards 
positive/negative i.e. heat flows from hot to cold.

● To solve the heat equation, also initial conditions (IC’s) and boundary
conditions (BC’s) are needed

● On the present course we solve heat equation by computer.  

ρ cp
∂T
∂ t

= ∂
∂ x

(k
∂T
∂ x

)



  

Example: Steady State Solution of the Heat 
Equation with Fixed Temperature boundary 

conditions at both ends
● In steady state time approaches infinity and we can write: 

● Integrate twice to obtain: 

● The requirement to fulfill BC’s gives:

0= ∂
∂ x

(α
∂ T
∂ x

), 0≤x≤L

T (x=0)=T 1  and T (x=L)=T 2

T (x , t )=A+Bx

T (x , t )=T 1+(T2−T 1) x /L



  

Example solutions of heat equation with two 
different boundary conditions

● Diffusive processes are very slow in comparison to convective processes
● Below, two examples of heat diffusion in iron (profiles taken from different

times)
● Simulation time is in the order of 0.03-0.1s

Early time

Late time Late time

Early

Left and right end insulated i.e. dT/dx = 0 Left and right end fixed temperatures



  

Example: Time-Dependent Analytic 
Solution of the Heat 

Equation in a Periodic (Infinite) Domain
● Assuming constant properties, it is convenient to write:

● In a periodic domain of length L (m) with trigonometric (sinusoidal) initial 
condition,T(x,t=0)=T

o
+T

1
sin(kx) the equation can be easily solved for 

unknown temperature 
● It is noted that a general solution is of the form

where the wavenumber k=2π/L.
● Exercise: show that the solution above fulfills the equation by inserting

it to the heat eqn. 

∂T
∂ t

= ∂
∂ x

(α
∂ T
∂ x

)

T (x , t )=T o+T 1sin (k x)exp (−k 2α t )



  

How Long Time Would it Take for 
the Heat to Diffuse Across Distance L? 

● The earlier considered periodic solution in an infinite domain is:

● The exponential term has a timescale (think in form exp(-t/)):

● The diffusion time is noted to be 
diff

 ~ L2/α  
● This means essentially that if you double the distance (think doubling 

thickness of a wall of building) it will take four times longer time for heat 
to diffuse across that distance. 

  

T (x , t)=T o+T 1sin (k x)exp (−k 2α t )

τ=1 /k2
α=

L2

4 π
2
α



  

Lecture 1.2 Numerical approach: Newton’s 
cooling law and 1d heat equation

ILO 1: Student can derive and explain physical origin of the heat 
equation, describe solution behavior by example solutions and 
boundary conditions, and solve the heat equation (1d) and 
Newton’s cooling law (0d) numerically in Matlab. 



  

HW1: Newton’s cooling law applied 
for a soda-can example solved numerically in 

Matlab



  

Recall: Newton’s cooling law

dT
dt

=
−hA s

cp m
(T−T ∞)

T (t=0)=T o  initial condition

T (t)=(T o−T ∞)exp(
−hA s

c p m
t)+T ∞

Analytical solution exists → good starting point for the computer learning: 
how to numerically solve temperature development in the above equation?

Analytical solution



  

Recap: simple ODE’s can be solved by 
separation of variables (relevance: HW1) 

dy
dt

=−a y

y (t =0)= yo  initial condition and a = const.

∫
dy
y

=−∫ adt

Separate y and t containing parts to different sides and integrate:

Simple ODE for unknown function y=y(t)

log ( y )=−(at+D) ,  where a=integration const.

y (t )= y o exp(−at )

By using the initial condition it is easy to see that:



  

Solving temperature numerically over 
a short time interval ∆t (timestep)

dT
dt

=
−hA s

c p m
(T −T ∞) dT=−dt

hA s

c p m
(T −T ∞)

ΔT=−Δ t
hA s

c p m
(T−T ∞) ΔT n=−Δ t

hA s

c p m
(T n−T ∞)

T n+1=T n+ΔT nFind new temperature using 

the Euler m
ethod

t n=nΔ t ,n=0,1,2,...

Solution proceeds in discrete 
timesteps



  

Pseudo-code to solve Newton’s cooling law by
explicit Euler method

Step 0: T o known

Step 1: ΔT n=−Δ t
hA s

c p m
(Tn−T ∞)

Step 2: T n+1=T n+ΔT n

Step 3:  go to Step 1 until simulation time exceeded



  

Temperature of a cooling soda can 
 computed by Newton’s cooling law numerically 

and analytically



  

Matlab implementation

Program: /Example0d/cool0d.m
Execution: >> cool0d
What it does: Solves 0d Newton's cooling law for temperature of a “0d” drink can.

Snapshot of code that does the job:
cp = 4190;             % specific heat J/kgK
dt = 20;               % timestep in s
To = 273+20;           % initial temperature K
Tinf=273+4;            % fridge temperature K
simutime  = 3*3600;    % simulation time s
simusteps = round(simutime/dt); 
T  = To;   % initial temperature
               
% h=heat transfer coefficient W/(m^2K) 
H = ...;
% As=surface area
As = …;

for(k=1:simusteps)
    dT = -(h*As/(m*cp))*dt*(T-Tinf);
    T = T+dT;
    Tcol(k) = T; % collect temperatures to Tcol
end

HOW TO IMPLEMENT THIS 
IN PRACTICE?
→ open Matlab terminal
→ open text editor
→ create new file with
some name e.g. cool0d.m
→ add the text from the 
left to file cool0d.m
→ run by typing text 
cool0d on terminal 



  

figure(1), clf, box, hold on
alltime = linspace(0,simutime/3600, simusteps);
plot(alltime, Tcol, 'k-','Linewidth',2)
plot(alltime, (To-Tinf)*(exp(-h*As*3600*alltime/(m*cp))) 
+ Tinf, 'b--','Linewidth',2)
plot(alltime, (273+7)*(ones(length(alltime),1)), 'r-', 
'Linewidth',2)
plot(alltime, (Tinf)*(ones(length(alltime),1)), 'g-', 
'Linewidth',2)

h=xlabel('Time (h)'); 
h=ylabel('Temperature (K)'); 
h=legend('Numerical solution',  'Analytical solution','T 
= 7 deg C','T = 4 deg C'); set(h,'Fontsize', 16)
print -dpng TcoolingCan    
    

Plotting the results
1) e.g. plot(x,y,'k-') where
x and y are vectors
2) Note: length(x)=length(y) 
3) >> help plot



  

HW1: Heat equation solved in 1d by finite 
difference method in Matlab



  

Power exiting
[W/m²]

Power entering
[W/m²]

∆x

∆z

∆y

Last week: Consider heat conduction in 1d e.g. in metal rod.
Divide the 1d object into small elements and carry out energy balance analysis 

for 1 of those elements. Assume: no heat losses. 

x+∆xx-∆x x



  

Recall from last week → derivation of heat equation: 
Next we apply energy conservation law for a small infinitesimal 

volume assuming conduction only 
(e.g.1d metal rod)

ρcp ΔT (x , t)Δ x Δ y Δ z=[k
∂T (x+Δ x /2 , t )

∂ x
−k

∂T (x−Δ x /2 ,t)
∂ x

]Δ y Δ zΔ t

Energy change in a short
time [J]

Power flux entering
[W/m²] i.e. Fourier’s law

Power flux exiting
[W/m²] i.e. Fourier’s law

Then: Divide both sides by ΔxΔyΔzΔt.

Power exiting
[W/m²]

Power entering
[W/m²]

∆x

∆z

∆y

xx-∆x/2 x+∆x/2



  

Heat Equation and the Finite Difference Method

∂T
∂ t

=α
∂

2T
∂ x2

T i
n+1

=T i
n
+Δ t α

T i+1
n

−2 T i
n
+T i−1

n

Δ x2
CFL=

αΔ t

Δ x2

Courant-
Friedrichs-
Lewy number
(CFL<0.5 for
stability).

T i
n+1−T i

n

Δ t
=α

(T i+1
n −T i

n)−(T i
n−T i−1

n )

Δ x2

Now we have an explicit update scheme for T in each discrete grid 
point i. This is the explicit Euler scheme (most simple timestepping). 

Theory: Let ∆-variables → 0 
→ heat equation

In simulations, ∆t and ∆x are of finite size
→”finite difference” approximation of heat equation  



  

“Numerical solution of heat equation” is a 
“solution at discrete data points”

● Heat equation is already quite challenging equation to solve by 
pen/paper even in simple cases

● Typically, even if it would be possible to obtain an analytical 
solution, one would need a computer to evaluate/visualize the 
solution (e.g. sum of infinite Fourier series) 

● Discretization of solution points means that in numerics e.g. 
temperature is evaluated in a finite value of evaluation points in 
space and time e.g. T(x,t) → T(x

i
,t

i
) where x

i
 = iΔx and t

n
 = nΔt 

● Discretization of partial derivatives means that the continuous 
partial derivatives are replaced by discrete finite difference 
estimations



  

Numerical approximation of partial derivatives
● Conduction and convection of temperature (energy conservation) 

can be generally described by the convection-diffusion equation. 
● Finite difference formulas offer a way to approximate partial 

derivatives
● Once partial derivatives are known in space and time, then one 

obtains a way to solve temperature distributions
● The following convection-diffusion equation type appears 

commonly on this course (u = fluid velocity, α = thermal 
diffusivity). 

∂T
∂ t

+u
∂T
∂ x

=α
∂2 T

∂ x2

(
∂T
∂ t )

i

n

≈
T i

n+1
−T i

n

Δ t (∂
2T

∂ x2 )
i

n

≈
T i+1

n
−2T i

n
+T i−1

n

Δ x2(∂T
∂ x )

i

n

≈
T i+1

n −T i−1
n

2Δ x

Observation: if the solution points from time level n are known in each point I the new solution
values at time level n+1 can be solved for.

1st order Euler formula for time 
derivative at fixed space point.

2nd order central difference for 1st 
space derivative at a fixed time.

2nd order central difference for 2nd  
space derivative at a fixed time.



  

t=t
n

t=t
n+1

t=t
n+2

t n=nΔ t ,n=0,1,2, ...

T1
n T2

n T3
n TN +1

n TN +2
n

T 1
n+1 T 2

n+1 T 3
n+1 TN +1

n+1 TN +2
n+1

T 1
n+2 T 2

n+2 T3
n+2 TN +1

n+2 TN +2
n+2

x=0 x=L

Domain boundary is 
defined on cell face

Outside the boundary a 
“ghost” cell is imagined
where a temperature 
value is set to implement
a given type of boundary
condition.   

Solution points 
are stored at discretization
cell centroids.

x=Δx/2
x=3Δx/2

x

x=0

t

Domain boundary is 
defined on cell face

“ghost” cell 



  

Discretization of 1d Heat Equation 
by Finite Difference Method

∂T
∂ t

=α
∂

2T
∂ x2

T i
n+1

=T i
n
+Δ t α

T i+1
n

−2 T i
n
+T i−1

n

Δ x2
CFL=

αΔ t

Δ x2

Courant-
Friedrichs-
Lewy number
(CFL<0.5 for
stability).

T i
n+1

−T i
n

Δ t
=α

T i+ 1
n

−2 T i
n
+T i−1

n

Δ x2

Now we have an explicit update scheme for T in each discrete grid 
point i. This is the explicit Euler scheme (most simple timestepping). 

Continuous PDE Discretized PDE



  

      Numerical solution of heat eqn at different times and values 
stored in a table. Here: T

right 
= 373K and T

left
 = 293K

>> T

ans =

  373.7
  372.3
  372.2
  372.1
  372.0
  371.9
  371.7
  …

“Ghost cell”
value First cell

inside the
domain at
hot end

Here: 198 internal cells, 2 ghost cells

Early
time

Later
time



  

Boundary condition types

Ghost
cell
i=1

i=2
T2 

i=3
T3

i=N+1
TN+1

Ghost
cell
i=N+2

• The problem: some numerical value needs to be assigned to the ”ghost cells”

• Case 1: Boundary temperature fixed → boundary heat flux follows

• Case 2: Boundary heat flux zero (insulated) → zero temperature gradient through boundary 

(Fourier’s law: heat flux = 0)

• Case 3: Boundary heat flux fixed → boundary temperature follows.

x=0 x=L

(T1
n+T 2

n)/2=T min
Case 1: 

T 1
n
=T 2

n T N +1
n

=T N +2
nCase 2: 

Case 3: −k (T 2
n−T 1

n)/Δ x=qL

→ In all the cases a “ghost cell” value is needed. 
→ Ghost cell: we can imagine a virtual cell outside the domain
where we enter a temperature value so that the desired BC 
becomes exactly fulfilled. 



  

Update scheme for 1d heat equation

T i
n+1

=T i
n
+Δ t α

T i+1
n

−2 T i
n
+T i−1

n

Δ x2

1) Set boundary conditions to ghost cells 1 and 
N+2 using T from step n. 

2) Update new temperature at timestep n+1 in the 
internal cells 2...N+1

3) Update time according to t = t + dt

4) Go back to 1)



  

This update scheme is very easy to program in 
Matlab for-loop

Program: /Example1d/HeatDiffusion.m
Execution: >> HeatDiffusion
What it does: Solves 1d heat equation in equispaced grid, fixed T

left
 and T

right
.

for(t=1:K)
    % set boundary conditions 
    T(1)  = 2*Tleft - T(2); T(N+2) = 2*Tright - T(N+1);                     
      
    % update temperature in inner points                                    
    T(in) = T(in) + (dt*kappa/dx^2)*(T(in+1)-2*T(in)+T(in-1)); 
end

Main for-loop:

Note: I use constantly the “trick” which makes Matlab-programs often very fast.
% define a table which refers to the 'inner points'
in = 2:(N+1);
 

Example for N+1 = 5
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