

EEN-1020 Heat transfer Week 2: Fins, 2d Conduction, Thermal Resistance, and Numerical Solution in 2d

Prof. Ville Vuorinen November 1st- 2nd 2022 Aalto University, School of Engineering

On the heat transfer course, we have "5 friends" i.e. 5 main principles that are used to explain heat transfer phenomena

1) Energy conservation: "J/s thinking"

- 2) Fourier's law
- 3) Newton's cooling law
- 4) Energy transport equation convection/diffusion equation
- 5) Momentum transport equation Navier-Stokes equation

Lecture 2.1 Theory: Fins and thermal resistance

ILO 2: <u>Student can apply Fourier's law and Newton's law in fin</u> <u>theory and thermal resistance context.</u> Further, the student can analyse 2d heat transfer data in Matlab and formulate an energy balance for 2d system.

Thermal resistance

Two examples of heat diffusion in 1d

- Left: initially Gaussian temperature profile diffuses. Amplitude decreases and the distribution spreads with time. The domain ends are insulated \rightarrow heat does not escape from the domain. $q_{left} = q_{right} = 0$. Note: for fixed q bc T results.
- **Right:** initially constant temperature object is heated from right end. Temperature diffuses to the left end. Both ends are at fixed temperatures. $T_{left} = 293$ K and $T_{right} = 373$ K. **Note:** for fixed T bc q results.

Two examples of heat diffusion in 1d

- Left: initially Gaussian temperature profile diffuses. Amplitude decreases and the distribution spreads with time. The domain ends are insulated \rightarrow heat does not escape from the domain. $q_{left} = q_{right} = 0$. Note: for fixed q bc T results.
- **Right:** initially constant temperature object is heated from right end. Temperature diffuses to the left end. Both ends are at fixed temperatures. $T_{left} = 293$ K and $T_{right} = 373$ K. **Note:** for fixed T bc q results.

Derivation of steady state heat rate ([Q]=W=J/s) through a wall. Convective heat transfer coeff. h (wind&indoor ventilation)

In steady state: $Q_{in} = Q_{wall} = Q_{out} = Q$ Newton's law: $Q/(h_A A) = (T_A - T_1) \quad (1)$ Fourier's law: $Q/(kA/L) = (T_1 - T_2) \quad (2)$ Newton's law:

$$\frac{Q/(h_B A) = (T_2 - T_B)}{(3)}$$

Sum: (1) + (3) and note that $T_2 - T_1$ appears i.e. - (2) $T_A - T_B + T_2 - T_1 = Q/(h_A A) + Q/(h_B A)$

Wall heat rate (W):

$$Q = \frac{T_A - T_B}{1/(kA/L) + 1/(h_A A) + 1/(h_B A)}$$

Note: If you know Q you also know T_1 and T_2 and T(x).

Thermal resistance – composite wall with multiple (i=1,2,...,N) material layers

Heat rate in analogy with Newton's cooling law: $Q = UA \Delta T$, with $\Delta T = T_A - T_B$

$$Q = \frac{A \Delta T}{\sum_{i} 1/(k_i/L_i) + 1/(h_A) + 1/(h_B)}$$

Overall heat transfer coefficient ([U]=W/m²K): $U = \frac{1}{\sum_{i} 1/(k_i/L_i) + 1/(h_A) + 1/(h_B)}$ Thermal resistance ([R]=K/W):

Some benefits of thermal resistance concept:

- \rightarrow design of thermal insulation (buildings, clothes, combustion)
- \rightarrow allows to maximize or minimize heat flux
- \rightarrow allows designs to avoid hot pools of temperature from forming
- \rightarrow allows to design temperature profiles (e.g. avoid condensation)

Fin theory

Fins and fin theory

- To enhance heat transfer between **solid** and **fluid** phases
- Conduction along the fin, conduction and convection outside the fin
- Temperature distribution inside the fin in crucial role.
- In many circumstances T=T(x) i.e. 1d temperature distribution
- It enables formulation of 1d energy balance i.e. heat equation for a fin
- Such 1d conduction assumption in fin context is called fin theory.

Basic fin types

Typical finned-tube heat exchangers

Fins – surface extrusions that increase area of surface to increase heat transfer

3d printed heat exchangers intended for air cooling (V.Vuorinen, K.Kukko, K.Saari)

Plate fins

Pin fins

Temperature distribution inside the fin in crucial role:

 \rightarrow If we knew T=T(x) along a fin we could calculate the power which enters each fin. Also, we could try to optimize the fins & material costs to have good efficiency For heat transfer.

 \rightarrow We would then also know the entering heat flux to the fins.

Local energy balance (J/s thinking) for a single fin

Single fin

Energy balance in steady state (J/s):

 \mathcal{X}

T=T(x)

Local energy balance (J/s thinking) for a single fin

Fourier's law: Energy conducts (J/s) into a small volume

$$q_{\rm in} = -kA_c \frac{dT(x - dx/2)}{dx}$$

 $A_c = wt$

Fourier's law: Energy conducts (J/s) out of a small volume

$$q_{\text{out}} = -kA_c \frac{dT(x+dx/2)}{dx}$$

Newton's law:
Energy exits (J/s) from fin to fluid
(strip of area dA_s height dx, perimeter P=2(L+d))

$$q_{exit} = hdA_s(T - T_{\infty})$$

 $dA_s = 2(w+t)dx$

Local energy balance (J/s thinking) for a single fin

$$q_{\rm in} - q_{\rm out} - q_{\rm exit} = 0$$

$$kA_{c}\left(-\frac{dT\left(x-dx/2\right)}{dx}+\frac{dT\left(x+dx/2\right)}{dx}\right)-hdA_{s}\left(T-T_{\infty}\right)=0$$

$$A_{c}=wt$$

$$dA_{s}=2\left(w+t\right)dx=Pdx$$

When $dx \rightarrow 0$ we get the heat equation for T=T(x) in the fin but now the equation has also a heat loss term as heat escapes to the fluid:

$$\frac{d^2 T}{dx^2} = \frac{h P}{k A_c} (T - T_\infty)$$

$$m^2 = \frac{hP}{kA_c}$$

Definition of derivative								
	$\frac{1}{\Delta x}$	$\left(\frac{dT\left(x+dx/2\right)}{dx}-\right)$	$\frac{dT(x-dx/2)}{dx}$	$=\frac{d^2T(x)}{dx^2},$	when $\Delta x \rightarrow 0$			

Incropera: 1d Temperature Distribution and Heat Loss Along a Fin

C ase	T ip C onditionT emperature $(x = L)$ Distribution θ/θ_b			Fin Heat Transfer Rate q		
A	Convection heat transfer: $h\theta(L) = -kd\theta/dx _{x=L}$	$\frac{\cosh m(L - x) + (h/mk) \sinh m(}{\cosh mL + (h/mk) \sinh mL}$	$\frac{L - x}{(3.70)}$	$M \frac{\sinh mL + (h/mk) c}{\cosh mL + (h/mk) s}$	osh mL inh mL (3.72)	
В	A diabatic $d\theta/dx _{x=L} = 0$	$\frac{\cosh m(L - x)}{\cosh mL}$	(3.75)	M tanh mL	(3.76)	
С	Prescribed temperature: $\theta(L) = \theta_L$	$\frac{(\theta_L/\theta_b) \sinh mx + \sinh m(L - sinh mL)}{\sinh mL}$	- x)	$M \frac{(\cosh mL - \theta_L/\theta_b)}{\sinh mL}$		
-			(3.77)		(3.78)	
D	Infinite fin $(L \rightarrow \infty)$: $\theta(L) = 0$	e ^{-mx}	(3.79)	М	(3.80)	
$\theta = T - T$ $\theta_{b} = \theta(0)$	$ \begin{array}{l} T_{\infty} & m^{2} \equiv hP/kA_{c} \\ = T_{b} - T_{\infty} & M \equiv \sqrt{hPkA_{c}}\theta_{b} \end{array} $					

TABLE 3.4	Temperature of	distribution	and heat	loss for	fins of	uniform	cross	section
-----------	----------------	--------------	----------	----------	---------	---------	-------	---------

$$\frac{d^2T}{dx^2} = \frac{hP}{kA_c}(T - T_{\infty})$$

Figure 3.18 (Incropera): Conduction and convection in a fin of uniform cross section.

Example: Find temperature distribution and heat rate in a very long copper rod (diameter D=5mm) with T_b =373K and T_{∞} = 298K and convection coefficient due to airflow h=100W/m²K

Table 3.4: For long fins \rightarrow

$$T(x) \approx T_{\infty} + (T_b - T_{\infty}) e^{-mx}$$

Estimate thermal conductivity at average temperature = 335K from the Appendix (Incropera)

$$k = 398 W/mK$$

$$m = \sqrt{\frac{hP}{kA_c}} = \sqrt{\frac{4h}{kD}} \approx 14.2 \, m^{-1}$$

Heat rate

$$q_f = \sqrt{hPkA_c} \theta_b = 8.3 W$$

Table 3.4: Heat rate \rightarrow

Example temperature profiles for another infinitely long fin assuming $T_{h}=328K, T_{\infty}=293K$

Origin of table 3.4? Write the fin heat conduction equation in more compact form and note the general solution with BC's.

 $d^2\theta$

 dx^2

 $-m^2\theta=0$

P = 2w + 2t

 $A_c = wt$

(a)

 q_i

 → General solution
 (hyperbolic functions are linear comb. of exp. functions)

 $\theta = C_1 e^{mx} + C_2 e^{-mx}$

 \rightarrow For different boundary conditions, we can always solve the temperature distribution T(x).

 \rightarrow When we know T(x), we can calculate the heat transfer rate in two different ways.

1) Fourier's law

2) Newton's cooling law

Fin effectiveness

Fin effectiveness: (heat transfer rate with fin) / (heat transfer rate without fin)

Usage of fins typically justified if > 2

Common assumption (not reality but useful)

 \rightarrow assume that h is unaffected by 1) spatial position, and 2) presence of fins

Fin effectiveness (for infinitely long fin) reads (Table 3.4):

Heat transfer enhancement if:

→ perimeter to the area increased → prefer thin, closely spaced fins but not too close to not impede flow (e.g. laminarization/stagnation) between fins → if k/h is "small" then more need for fins (e.g. natural convection) → if fluid is gas then more need for fins

Example: automobile radiator (fins on the air flow side, hot water in the inside)

A few examples from our own research

Example: liquid cooling an electric circuit by placing a cooling plate with 3d printed finned microchannels on top of the circuit

K.Saari, A.Laitinen, K.Kukko, P.Peltonen, V.Vuorinen, J.Partanen (Int.J.Heat and Fluid Flow 2020)

Example: heat exchanger and air cooling for two fin types.

CFD simulation of air temperature from a cross-section of heat exchanger under forced convection: P.Peltonen (2017)

Lecture 2.2 Numerical approach: a Matlab solver for the 2d heat equation

ILO 2: Student can apply Fourier's law and Newton's law in fin theory and thermal resistance context. <u>Further, the student can analyse 2d heat transfer data in Matlab and formulate an energy balance for 2d system</u>.

Consider heat conduction in 2d or 3d object (e.g. metal plate). Divide the object into small elements and carry out energy balance analysis for 1 of those elements. Assume: no heat losses.

Derivation of heat equation:

Next we apply energy conservation law ("J/s thinking") for a small infinitesimal volume assuming conduction only (e.g.1d metal rod)

Energy increase of element due to heat fluxes in x-direction during Δt (J):

$$\Delta Q_{x} = \left[k \frac{\partial T(x + \Delta x/2, y, t)}{\partial x} - k \frac{\partial T(x - \Delta x/2, y, t)}{\partial x}\right] \Delta y \Delta z \Delta t$$

Energy increase of element due to heat fluxes in y-direction during Δt (J):

$$\Delta Q_{y} = \left[k \frac{\partial T(x, y + \Delta y/2, t)}{\partial y} - k \frac{\partial T(x, y - \Delta y/2, t)}{\partial y}\right] \Delta x \Delta z \Delta t$$

Energy increase of element during Δt (J):

$$\rho c_p \Delta T(x,t) \Delta x \Delta y \Delta z = \Delta Q_x + \Delta Q_y + \Delta Q_z$$

Then: Divide both sides by $\Delta x \Delta y \Delta z \Delta t$ and take the limit when all Δ -variables $\rightarrow 0 \rightarrow$ We get the heat equation.

Heat equation in 2d. Well, it is just thermal energy conservation law.

General form

$$\frac{\partial T}{\partial t} = \nabla \cdot \alpha \nabla T$$

Terms opened in 2d (assume α = constant)

What do the partial derivatives represent? Mathematical interpretation?

On computers, we can solve heat equation by finite difference methods. We discretize a 2d domain into small elements.

Finite difference discretizations

X:

General form of heat equation

 $\frac{\partial T}{\partial t} = \nabla \cdot \alpha \nabla T$

Time derivative in cell (i, j) at timestep n

$$\left(\frac{\partial T}{\partial t}\right)_{i,j}^{n} \approx \frac{T_{i,j}^{n+1} - T_{i,j}^{n}}{\Delta t}$$

Terms opened in 2d

Second space derivatives at cell (*i*,*j*)

$$\left(\frac{\partial^2 T}{\partial x^2}\right)_{i,j}^n \approx \frac{T_{i+1,j}^n - 2T_{i,j}^n + T_{i-1,j}^n}{\Delta x^2}$$

y:
$$\left(\frac{\partial^2 T}{\partial y^2}\right)_{i,j}^n \approx \frac{T_{i,j+1}^n - 2T_{i,j}^n + T_{i,j-1}^n}{\Delta y^2}$$

Update Formula by Explicit Euler Method

Explicit Euler timestepping for 2d heat equation:

$$CFL = \frac{\alpha \Delta t}{\Delta x^2}$$

$$T_{i,j}^{n+1} = T_{i,j}^{n} + \Delta t \alpha \frac{T_{i+1,j}^{n} - 2T_{i,j}^{n} + T_{i-1,j}^{n}}{\Delta x^{2}} + \Delta t \alpha \frac{T_{i,j+1}^{n} - 2T_{i,j}^{n} + T_{i,j-1}^{n}}{\Delta y^{2}}$$

Which is equal to the "delta" form:

$$\Delta T_{i,j}^{n} = \Delta t \alpha \frac{T_{i+1,j}^{n} - 2T_{i,j}^{n} + T_{i-1,j}^{n}}{\Delta x^{2}} + \Delta t \alpha \frac{T_{i,j+1}^{n} - 2T_{i,j}^{n} + T_{i,j-1}^{n}}{\Delta y^{2}}$$

Where:

 $\Delta T_{i,j}^{n} = T_{i,j}^{n+1} - T_{i,j}^{n}$

Numerical solution of temperature distribution in a heated 2d metal plate

BC 2:

- Insulated sides
- Cool top and hot base

$$\rightarrow T=T(y,t) (1d)$$

Numerical solution of temperature distribution with two hot, one cold, and one insulated boundary

Early time temperature

Late time temperature

Zoom to plate upper left corner

ans =**269.8795** 276.1205 280.3794 283.3261 285.3968 **316.1205** 309.8795 305.6206 302.6739 300.6032 314.0774 311.9226 309.8685 308.0042 306.3579 313.6455 312.3545 311.0793 309.8467 308.6758 313.4649 312.5351 311.6104 310.7006 309.8141 313.3662 312.6338 311.9038 311.1806 310.4685 313.3043 312.6957 312.0882 311.4845 310.8868 313.2623 312.7377 312.2138 311.6922 311.1742 313.2321 312.7679 312.3041 311.8418 311.3820 313,2095 312,7905 312,3717 311,9540 311,5380 313.1921 312.8079 312.4239 312.0406 311.6586 313.1784 312.8216 312.4651 312.1091 311.7541 313.1673 312.8327 312.4984 312.1645 311.8312 313.1581 312.8419 312.5257 312.2100 311.8948 313,1505 312,8495 312,5486 312,2481 311,9479 313.1440 312.8560 312.5681 312.2805 311.9932 313.1384 312.8616 312.5850 312.3086 312.0325 313.1334 312.8666 312.5999 312.3334 312.0672 313.1289 312.8711 312.6133 312.3557 312.0984 313.1248 312.8752 312.6256 312.3762 312.1270

>> T(1:20,1:5)

Ghost cell row of the top side BC

	ans =					Note:
The corner	269.8795	276.1205	280.3794	283.3261	285.3968	
cell is	316.1205	309.8795	305.6206	302.6739	300.6032	1) the two
redundant	314.0774	311.9226	309.8685	308.0042	306.3579	values are
	313.6455	312.3545	311.0793	309.8467	308.6758	different \rightarrow
	313.4649	312.5351	311.6104	310.7006	309.8141	Boundary
	313.3662	312.6338	311.9038	311.1806	310.4685	Deanadry
	313.3043	312.6957	312.0882	311.4845	310.8868	2) the
Gnost cell	313.2623	312.7377	312.2138	311.6922	311.1742	average
	313.2321	312.7679	312.3041	311.8418	311.3820	of the two
	313.2095	312.7905	312.3717	311.9540	311.5380	const.
SIGE BC	313.1921	312.8079	312.4239	312.0406	311.6586	→ fixed
	313.1784	312.8216	312.4651	312.1091	311.7541	$T_{top} = 293K$
	313.1673	312.8327	312.4984	312.1645	311.8312	
	313.1581	312.8419	312.5257	312.2100	311.8948	
	313.1505	312.8495	312.5486	312.2481	311.9479	
	313.1440	312.8560	312.5681	312.2805	311.9932	
	313.1384	312.8616	312.5850	312.3086	312.0325	
	313.1334	312.8666	312.5999	312.3334	312.0672	
	313.1289	312.8711	312.6133	312.3557	312.0984	
	313.1248	312.8752	312.6256	312.3762	312.1270	