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1) Energy conservation: “J/s thinking” 

2) Fourier’s law

3) Newton’s cooling law 

4) Energy transport equation – convection/diffusion equation

5) Momentum transport equation – Navier-Stokes equation

On the heat transfer course, we have “5 friends” 
i.e. 5 main principles that are used to explain

heat transfer phenomena  
 



  

Lecture 2.1 Theory: Fins and thermal resistance 

ILO 2: Student can apply Fourier’s law and Newton’s law in fin 
theory and thermal resistance context. Further, the student can 
analyse 2d heat transfer data in Matlab and formulate an energy 
balance for 2d system. 



  

Thermal resistance



  

Two examples of heat diffusion in 1d
● Left: initially Gaussian temperature profile diffuses. Amplitude decreases and the 

distribution spreads with time. The domain ends are insulated → heat does not escape 
from the domain. q

left 
= q

right 
= 0. Note: for fixed q bc T results. 

● Right: initially constant temperature object is heated from right end. 
Temperature diffuses to the left end. Both ends are at fixed temperatures.
T

left 
= 293K and T

right 
= 373K. Note: for fixed T bc q results. 

Early time

Late time Late time

Early

Left and right end insulated i.e. dT/dx = 0 Left and right end fixed temperatures
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T(x) = (T
right 

- T
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)x/L + T
left

q =k (T
right 

- T
left

)/L

Fourier

Linear temperature profile



  

Derivation of steady state heat rate ([Q]=W=J/s) through a wall. 
Convective heat transfer coeff. h (wind&indoor ventilation) 

T A , Qin , hA

Qin=Qwall=Qout=Q

Q /(kA / L)=(T1−T 2)

Q /(hB A)=(T 2−T B)

Q /(hA A)=(T A−T 1)
A=wall area

(1)

(2)

(3)

Sum: (1) + (3) and note that T
2
-T

1
 appears i.e. - (2)

T A−T B+T 2−T 1=Q /(hA A)+Q /(hB A )

Q=
T A−T B

1/ (kA / L)+1/(hA A)+1/ (hB A )

Note: If you know Q 
you also know T

1 
and T

2

and T(x).

T B , Qout , hB

Qwall

T 1 T 2

Newton’s law: 

Fourier’s law:

Newton’s law:

In steady state:

Wall heat rate (W):

T (x)

L



  

Thermal resistance – composite wall 
with multiple (i=1,2,…,N) material layers

Q=
A ΔT

Σi 1/(k i / Li)+1/(hA)+1/ (hB)

Some benefits of thermal resistance concept:
→ design of thermal insulation (buildings, clothes, combustion)
→ allows to maximize or minimize heat flux
→ allows designs to avoid hot pools of temperature from forming
→ allows to design temperature profiles (e.g. avoid condensation)  

Rtot=
1

U A

Q=UA ΔT ,  with ΔT =T A−T B

Heat rate in analogy with Newton’s cooling law:

U =
1

Σi 1/(k i / Li)+1/(hA)+1/ (hB)

Overall heat transfer coefficient ([U]=W/m2K): Thermal resistance ([R]=K/W):

L
3

L
2

L
1



  

Fin theory



  

Fins and fin theory

• To enhance heat transfer between solid and fluid phases

• Conduction along the fin, conduction and convection outside the fin

• Temperature distribution inside the fin in crucial role. 

• In many circumstances T=T(x) i.e. 1d temperature distribution

• It enables formulation of 1d energy balance i.e. heat equation for a fin

• Such 1d conduction assumption in fin context is called fin theory. 

Basic fin types Typical finned-tube heat 
exchangers



  

Fins – surface extrusions that increase area
of surface to increase heat transfer

Plate fins Pin fins

3d printed heat exchangers intended for air cooling (V.Vuorinen, K.Kukko, K.Saari)



  

Energy balance (J/s thinking) 
for a heated object (mass m, specific heat c

p
)

Energy balance: 

QIN−QOUT=c p m
ΔT ave(t )

Δ t

QIN=QOUT

Steady state: 



  

Temperature distribution inside the fin in crucial role:

→ If we knew T=T(x) along a fin we could calculate the 
power which enters each fin. Also, we could try to 
optimize the fins & material costs to have good efficiency
For heat transfer. 

→ We would then also know the entering heat flux to the 
fins.  



  

Local energy balance (J/s thinking) 
for a single fin

Energy balance in 
steady state (J/s): 

q in−qout−qexit=0

Single fin

q
exit

q
out

q
in 

T=T(x)

x



  

q in=−kAc

dT (x−dx /2)
dx

qexit=hdAs(T−T∞)

Fourier’s law:

Energy conducts (J/s) into a small volume

Fourier’s law:

Energy conducts (J/s) out of a small volume

Newton’s law:

Energy exits (J/s) from fin to fluid 
(strip of area dA

s
 height dx, perimeter P=2(L+d))

qout=−kAc

dT (x+dx /2)

dx

A c=wt

dA s=2(w+ t)dx

Local energy balance (J/s thinking) 
for a single fin



  

d2 T
dx2 =

h P
k Ac

(T −T∞)

When dx→ 0 we get the heat equation for T=T(x) in the fin but now
the equation has also a heat loss term as heat escapes to the fluid:   

m2
=

h P
k Ac

q in−qout−qexit=0

kAc (-
dT (x−dx /2)

dx
+

dT (x+dx /2)

dx
)−hdA s(T −T ∞)=0

Local energy balance (J/s thinking) 
for a single fin

A c=wt

dA s=2(w+t )dx=Pdx

1
Δ x

(
dT (x+dx /2)

dx
−

dT (x−dx /2)

dx
)=

d2 T (x)

dx2
,  when Δ x→0

Definition of derivative



  

Incropera: 1d Temperature Distribution and 
Heat Loss Along a Fin 

d2 T
dx2 =

h P
k Ac

(T −T∞)



  
Figure 3.18 (Incropera): Conduction and convection in a fin of uniform cross section. 



  

Example: Find temperature distribution and heat rate in a very 
long copper rod (diameter D=5mm) with T

b
=373K and T

∞
= 298K 

and convection coefficient due to airflow h=100W/m2K

T (x)≈T∞+(T b−T∞)e−mxTable 3.4: For long fins →  

k=398 W /mK
Estimate thermal conductivity 
at average temperature = 335K
from the Appendix (Incropera)

m=√ h P
k Ac

=√ 4 h
k D

≈14.2 m−1

q f =√hPkA cθb=8.3 WTable 3.4: Heat rate →   

Estimate m:

Temperature distribution

Heat rate



  

Example temperature profiles for another 
infinitely long fin assuming 

T
b
=328K, T

∞
=293K



  

Origin of table 3.4? Write the fin heat conduction equation in 
more compact form and note the general solution with BC’s.

d2T

dx2 =
h P
k A c

(T−T ∞)

θ=(T−T ∞)

m2
=

h P
k A c

→ For different boundary conditions,
we can always solve the 
temperature distribution T(x). 

→ When we know T(x), we can 
calculate the heat transfer rate 
in two different ways.  

1) Fourier’s law

2) Newton’s cooling law
 

d2θ

dx2 −m2
θ=0

θ=C1emx+C2 e−mx

→ General solution 
(hyperbolic functions are linear comb. 
of exp. functions)



  

Fin effectiveness

ϵf =
q f

hAc ,b θb

Common assumption (not reality but useful) 
→ assume that h is unaffected by 1) spatial position, and 2) presence of fins 

Fin effectiveness: (heat transfer rate with fin) / (heat transfer rate without fin)  

ϵf =(
kP

hA c
)

1 /2

Fin effectiveness (for infinitely long fin) reads (Table 3.4):

Heat transfer enhancement if: 
→ perimeter to the area increased → prefer thin, closely spaced fins but not too 
close to not impede flow (e.g. laminarization/stagnation) between fins
→if k/h is “small” then more need for fins (e.g. natural convection) 
→if fluid is gas then more need for fins

Example: automobile radiator (fins on the air flow side, hot water in the inside) 

Usage of fins typically justified if > 2



  

A few examples from our own research



  

Example: liquid cooling an electric circuit by placing 
a cooling plate with 3d printed finned microchannels on 

top of the circuit

K.Saari, A.Laitinen, K.Kukko, P.Peltonen, V.Vuorinen, J.Partanen (Int.J.Heat and 
Fluid Flow 2020)

Note:
fins



  

Example: heat exchanger and air cooling for 
two fin types.

Plate fins Pin fins

CFD simulation of air temperature from a cross-section of heat exchanger under forced convection: P.Peltonen (2017)

https://www.youtube.com/watch?v=AI1voSK4AJc

c p ṁ ΔT=Power

https://www.youtube.com/watch?v=AI1voSK4AJc



  

Lecture 2.2 Numerical approach: a Matlab 
solver for the 2d heat equation

ILO 2: Student can apply Fourier’s law and Newton’s law in fin 
theory and thermal resistance context. Further, the student can 
analyse 2d heat transfer data in Matlab and formulate an energy 
balance for 2d system. 



  

Power exiting
[W/m²]

Power entering
[W/m²]

∆x

∆z

∆y

Consider heat conduction in 2d or 3d object (e.g. metal plate). 
Divide the object into small elements and carry out energy balance analysis 

for 1 of those elements. Assume: no heat losses. 

Power entering
[W/m²]

Power exiting
[W/m²]



  

Derivation of heat equation: 
Next we apply energy conservation law (“J/s thinking”)

for a small infinitesimal volume assuming conduction only 
(e.g.1d metal rod)

ΔQ x=[k
∂T (x +Δ x /2 , y , t)

∂ x
−k

∂T (x−Δ x /2 , y , t)
∂ x

]Δ y Δ z Δ t

Then: Divide both sides by ΔxΔyΔzΔt and take the limit when all 
Δ-variables → 0 → We get the heat equation.

Power exiting
[W/m²]

Power entering
[W/m²]

∆x

∆z

∆y

xx-∆x/2 x+∆x/2

ρ cp ΔT (x ,t )Δ x Δ y Δ z=ΔQ x+ΔQ y+ΔQ z

ΔQ y=[k
∂T (x , y+Δ y /2 , t )

∂ y
−k

∂T ( x , y−Δ y /2 , t )
∂ y

]Δ x Δ zΔ t

Energy increase of element due to heat fluxes in x-direction during ∆t (J): 

Energy increase of element due to heat fluxes in y-direction during ∆t (J): 

Energy increase of element during ∆t (J): 



  

Heat equation in 2d. Well, it is just thermal 
energy conservation law.

∂T
∂ t

=α
∂2T

∂ x2 +α
∂2T

∂ y2

General form Terms opened in 2d (assume α = constant)

∂T
∂ t

=∇⋅α ∇ T



  

∂2T

∂ x2 >0  and 
∂2T

∂ y2 >0

∂2T

∂ x2 <0  and 
∂2T

∂ y2 <0

∂T
∂ t

=α
∂2T

∂ x2 +α
∂2T

∂ y2

General form Terms opened in 2d (assume α = constant)

∂T
∂ t

=∇⋅α ∇ T

What do the partial derivatives represent? 
Mathematical interpretation? 

At a local maximum of a function:

At a local minimum of a function:

∂T
∂ t

<0

∂T
∂ t

>0

In conduction 
problems heat 
conducts (diffuses) 
from hot to cold. 



  

On computers, we can solve heat equation by finite 
difference methods. We discretize a 2d domain into small 

elements.

T i , j
n T i+1, j

nT i−1, j
n

T i , j+1
n

T i , j−1
n

Δ y

Δ x

x=0

y=0

y=L
y

Ghost cell layer
where
boundary
conditions 
given.

Ghost cell layer
where
boundary
conditions 
given

T ghost
n

Cell center

x=L
x



  

Finite difference discretizations

∂T
∂ t

=∇⋅α ∇ T

(
∂T
∂ t )

i , j

n

≈
T i , j

n+1
−T i , j

n

Δ t

Time derivative in cell (i, j) at timestep n

(∂
2T

∂ x2 )
i , j

n

≈
T i+1, j

n
−2T i , j

n
+T i−1, j

n

Δ x 2

Second space derivatives at cell (i,j)

∂T
∂ t

= ∂
∂ x

α
∂T
∂ x

+ ∂
∂ y

α
∂ T
∂ y

(∂
2T

∂ y2 )
i , j

n

≈
T i , j+1

n
−2 T i , j

n
+T i , j−1

n

Δ y2

x:

y:

General form of heat equation Terms opened in 2d



  

Update Formula by Explicit Euler Method

T i , j
n+1

=T i , j
n

+Δ t α
T i+1, j

n
−2 T i , j

n
+T i−1, j

n

Δ x2
+Δ t α

T i , j+1
n

−2 T i , j
n

+T i , j−1
n

Δ y2

CFL=
αΔ t

Δ x2

ΔT i , j
n

=Δ t α
T i+1, j

n
−2T i , j

n
+T i−1, j

n

Δ x2
+Δ t α

T i , j+1
n

−2 T i , j
n

+T i , j−1
n

Δ y2

Which is equal to the “delta” form:

ΔT i , j
n

=T i , j
n+1

−T i , j
n

Explicit Euler timestepping for 2d heat equation:

Where:



  

Numerical solution of temperature distribution 
in a heated 2d metal plate

BC 1: 
- Cool sides and top
- Hot base
→ T=T(x,y,t) (2d)

BC 2: 
- Insulated sides
- Cool top and hot base
→ T=T(y,t) (1d)



  

Numerical solution of temperature distribution 
with two hot, one cold, and one insulated 

boundary
Early time temperature Late time temperature



  

Zoom to plate
upper left corner



  

>> T(1:20,1:5)

ans =
  269.8795  276.1205  280.3794  283.3261  285.3968
  316.1205  309.8795  305.6206  302.6739  300.6032
  314.0774  311.9226  309.8685  308.0042  306.3579
  313.6455  312.3545  311.0793  309.8467  308.6758
  313.4649  312.5351  311.6104  310.7006  309.8141
  313.3662  312.6338  311.9038  311.1806  310.4685
  313.3043  312.6957  312.0882  311.4845  310.8868
  313.2623  312.7377  312.2138  311.6922  311.1742
  313.2321  312.7679  312.3041  311.8418  311.3820
  313.2095  312.7905  312.3717  311.9540  311.5380
  313.1921  312.8079  312.4239  312.0406  311.6586
  313.1784  312.8216  312.4651  312.1091  311.7541
  313.1673  312.8327  312.4984  312.1645  311.8312
  313.1581  312.8419  312.5257  312.2100  311.8948
  313.1505  312.8495  312.5486  312.2481  311.9479
  313.1440  312.8560  312.5681  312.2805  311.9932
  313.1384  312.8616  312.5850  312.3086  312.0325
  313.1334  312.8666  312.5999  312.3334  312.0672
  313.1289  312.8711  312.6133  312.3557  312.0984
  313.1248  312.8752  312.6256  312.3762  312.1270



  

>> T(1:20,1:5)

ans =
  269.8795  276.1205  280.3794  283.3261  285.3968
  316.1205  309.8795  305.6206  302.6739  300.6032
  314.0774  311.9226  309.8685  308.0042  306.3579
  313.6455  312.3545  311.0793  309.8467  308.6758
  313.4649  312.5351  311.6104  310.7006  309.8141
  313.3662  312.6338  311.9038  311.1806  310.4685
  313.3043  312.6957  312.0882  311.4845  310.8868
  313.2623  312.7377  312.2138  311.6922  311.1742
  313.2321  312.7679  312.3041  311.8418  311.3820
  313.2095  312.7905  312.3717  311.9540  311.5380
  313.1921  312.8079  312.4239  312.0406  311.6586
  313.1784  312.8216  312.4651  312.1091  311.7541
  313.1673  312.8327  312.4984  312.1645  311.8312
  313.1581  312.8419  312.5257  312.2100  311.8948
  313.1505  312.8495  312.5486  312.2481  311.9479
  313.1440  312.8560  312.5681  312.2805  311.9932
  313.1384  312.8616  312.5850  312.3086  312.0325
  313.1334  312.8666  312.5999  312.3334  312.0672
  313.1289  312.8711  312.6133  312.3557  312.0984
  313.1248  312.8752  312.6256  312.3762  312.1270

Ghost cell row of the top side BC

The corner 
cell is 
redundant

Ghost cell
column of
the left
side BC

Note:

1) the two
values are 
different → 
not insulated
Boundary

2) the 
average
of the two 
values is 
const.
→ fixed 
T

top 
= 293K 
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