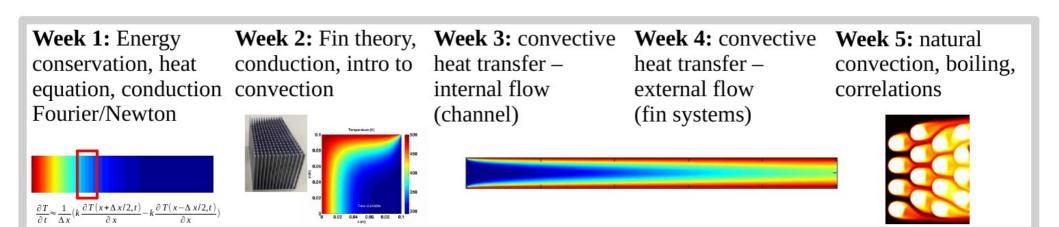


EEN-1020 Heat transfer Week 3: Convective Heat Transfer, Internal Flow and Numerical Solution in 2d

Prof. Ville Vuorinen November 8th- 9th 2022 Aalto University, School of Engineering



On the heat transfer course, we have "5 friends" i.e. 5 main principles that are used to explain heat transfer phenomena

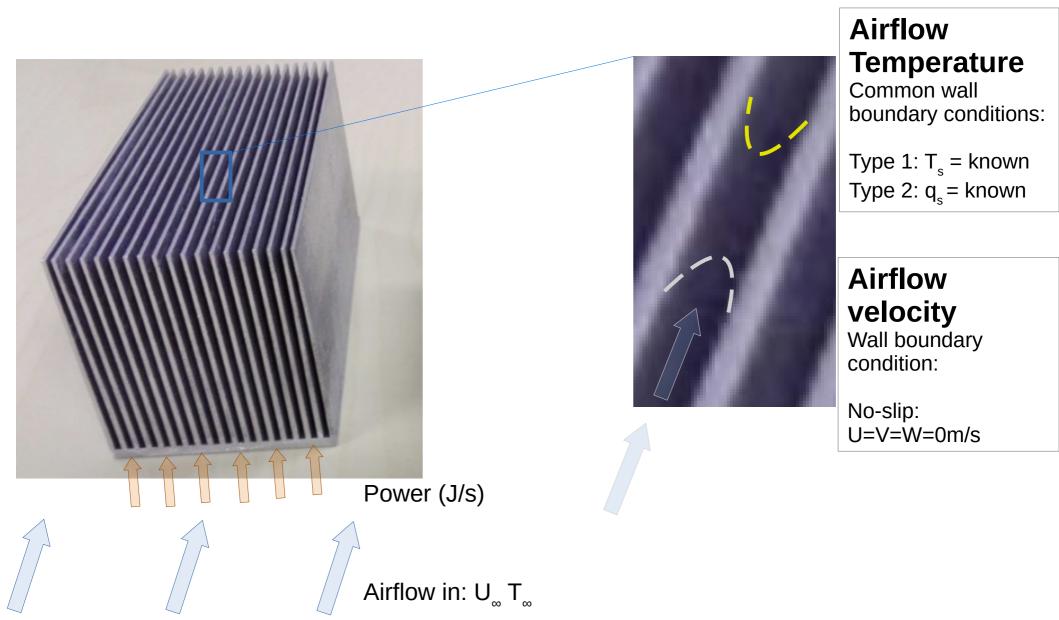
1) Energy conservation: "J/s thinking"

- 2) Fourier's law
- 3) Newton's cooling law
- 4) Energy transport equation convection/diffusion equation
- 5) Momentum transport equation Navier-Stokes equation

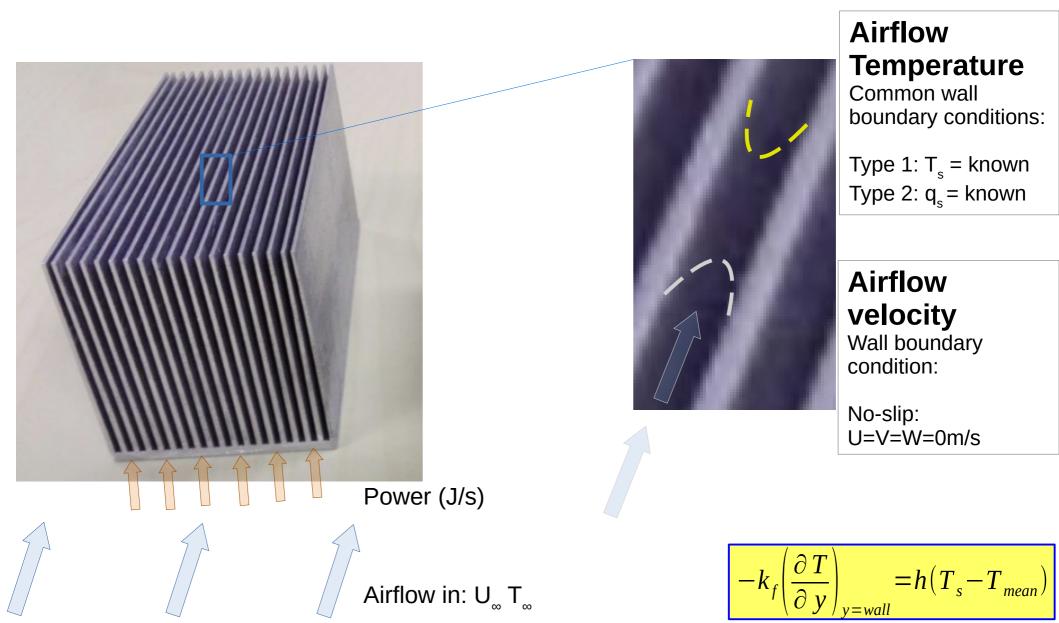
Lecture 3.1 Theory: Flow through a fin system, governing equations and analysis

ILO 3: <u>Student can write the governing equations of fluid/heat</u> <u>flow in a channel, estimate the energy balance and estimate</u> <u>temperature rise for different heating conditions.</u> The student can confirm the channel heat transfer using generated/provided simulation data.

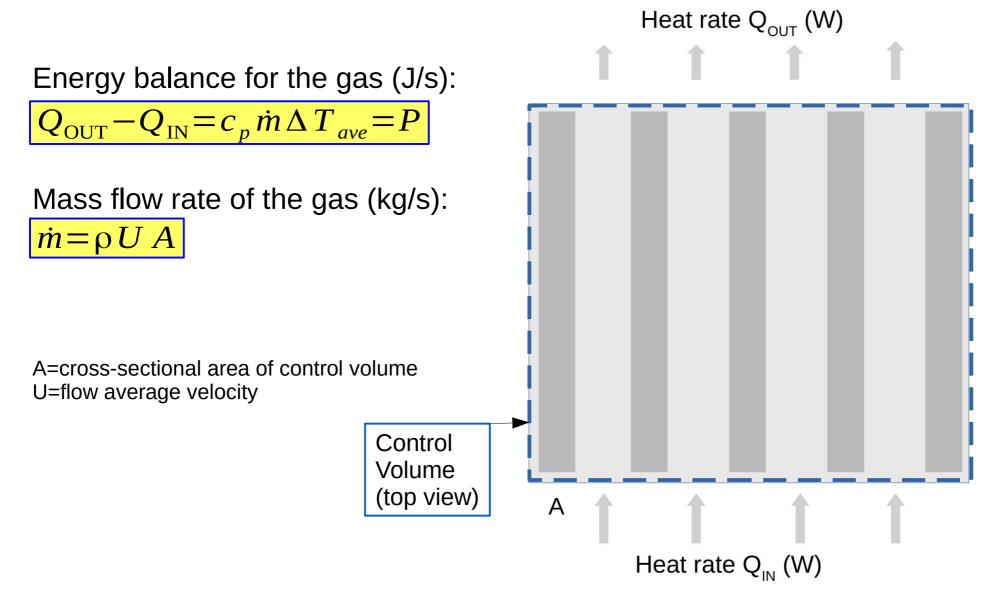
Air flows between the fins. Heat transfers from the hot fin surfaces to the gas.

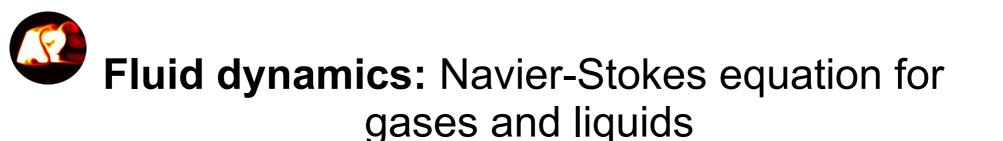


Air flows between the fins. Heat transfers from the hot fin surfaces to the gas.

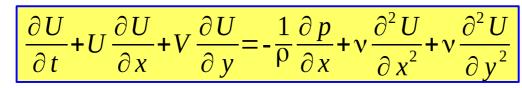


Energy balance (J/s thinking) for gas flow when the gas is heated at power P (W). "Control volume" thinking.



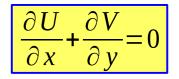


Navier-Stokes equation (conservation of momentum)



$$\frac{\partial V}{\partial t} + U \frac{\partial V}{\partial x} + V \frac{\partial V}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + v \frac{\partial^2 V}{\partial x^2} + v \frac{\partial^2 V}{\partial y^2}$$

Continuity equation (conservation of mass)

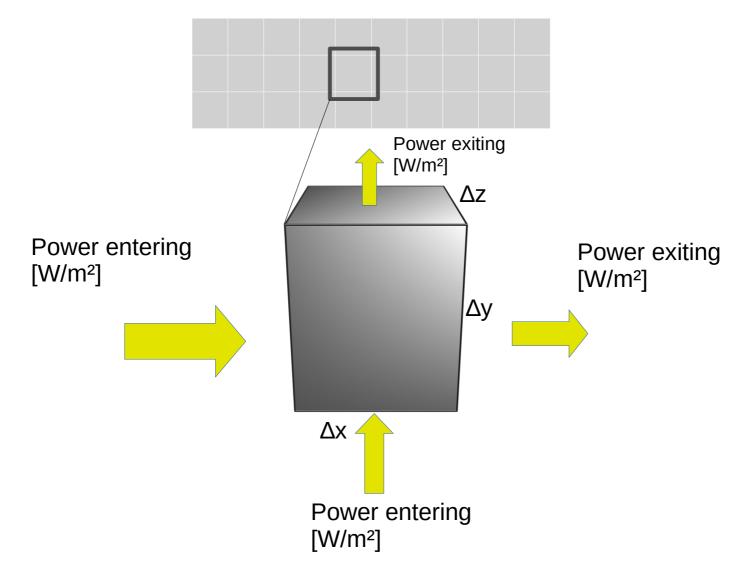


TimeConvectionPressureDiffusionderivativetermsgradientterms

Kinematic viscosity: $v = \mu/\rho$, $[v] = m^2/s$

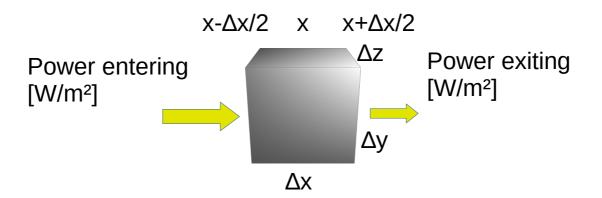
Thermodynamics&heat transfer:

Consider heat conduction and convection in 2d or 3d **fluid (gas or liquid).** Divide the space into small (fixed) elements and carry out energy balance analysis for 1 of those elements.



Derivation of convection-diffusion equation:

Next we apply energy conservation law ("J/s thinking") for a small infinitesimal volume assuming conduction only (e.g. gas flow between two fins)



Conduction: energy change of element due to heat fluxes in x-direction during Δt (J):

$$\Delta Q_{x} = \left[k \frac{\partial T(x + \Delta x/2, y, t)}{\partial x} - k \frac{\partial T(x - \Delta x/2, y, t)}{\partial x}\right] \Delta y \Delta z \Delta t$$

Convection: energy change of element due to velocity transporting heat in x-direction during Δt (J): $\Delta C_x = c_p \rho [-U(x + \Delta x/2, y, t)T(x + \Delta x/2, y, t) + U(x - \Delta x/2, y, t)T(x - \Delta x/2, y, t)] \Delta y \Delta z \Delta t$

Energy change of element during Δt (J): $\rho c_p \Delta T(x, y, z, t) \Delta x \Delta y \Delta z = \Delta Q_x + \Delta Q_y + \Delta Q_z + \Delta C_x + \Delta C_y + \Delta C_z$

Then: Divide both sides by $\Delta x \Delta y \Delta z \Delta t$ and take the limit when all Δ -variables $\rightarrow 0 \rightarrow$ We get the convection diffusion equation.

Convection-diffusion equation

 \rightarrow Thermal energy is transported by convection (flow velocity) and diffusion (conduction).

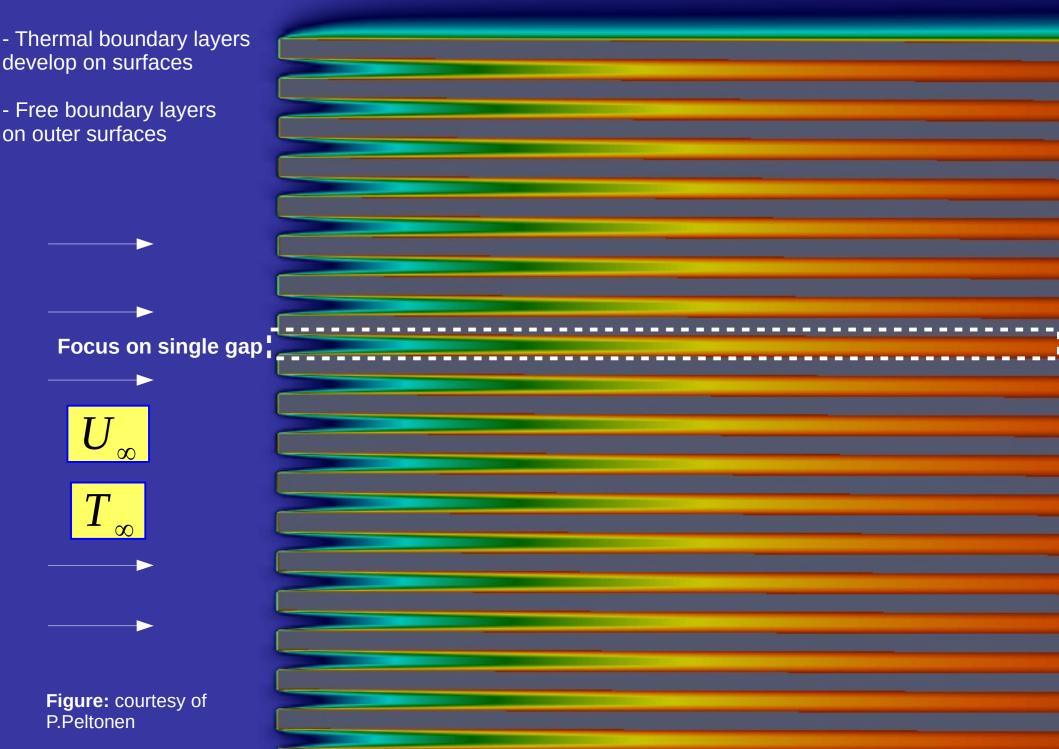
 \rightarrow The convection diffusion equation for temperature is simply energy conservation law on local level of the fluid.

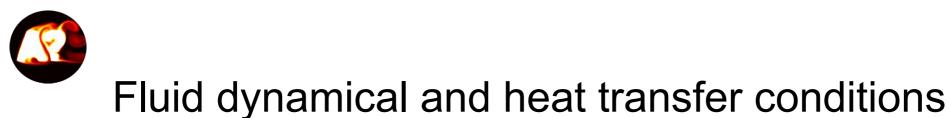
$$\frac{\partial T}{\partial t} + U \frac{\partial T}{\partial x} + V \frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial x^2} + \alpha \frac{\partial^2 T}{\partial y^2}$$

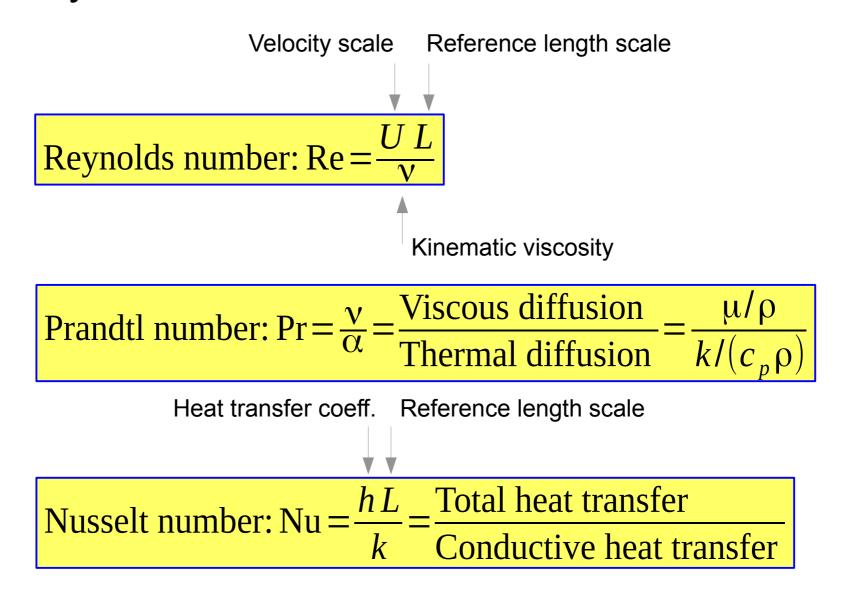
T changes in given position in time due to convection and diffusion T is transportedT is transportedby velocityby thermal diffusionfield (convection)(diffusion/conduction)

T=T(x,y) in steady state 2d laminar channel flow

Air temperature distribution in a plate fin heat exchanger (cross section)

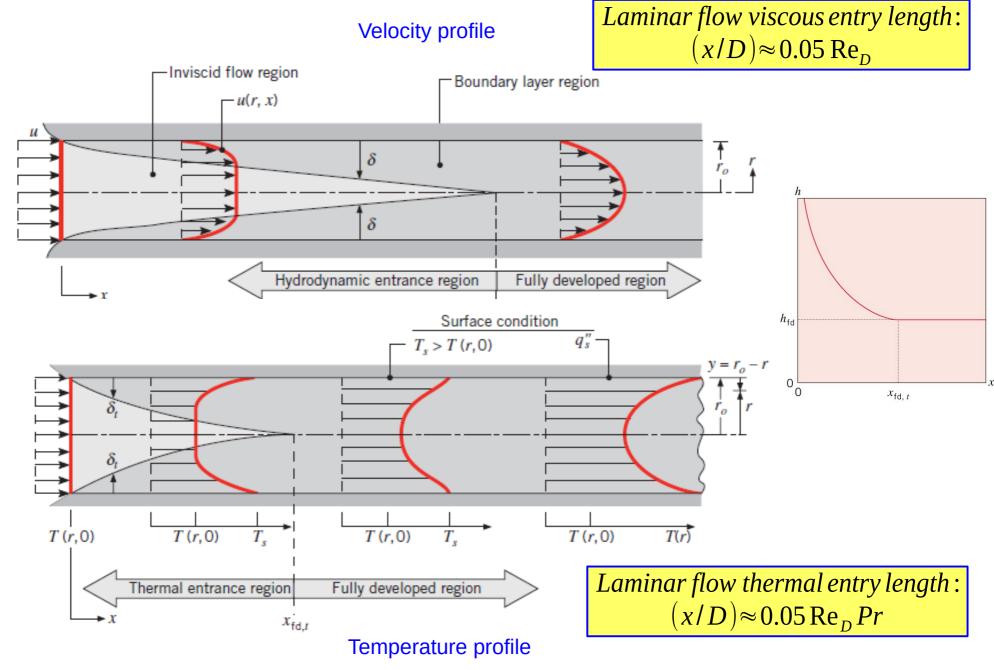


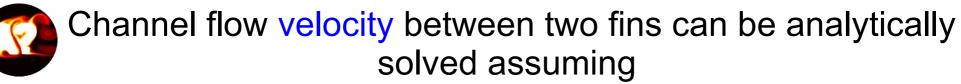




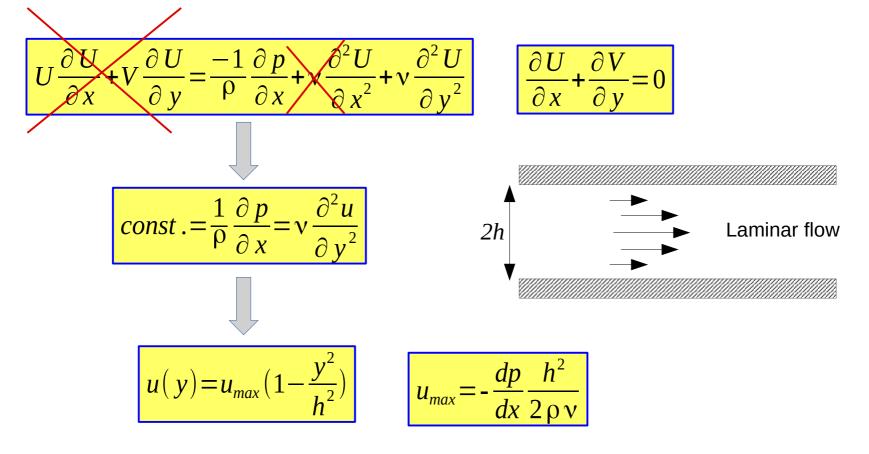
Figs. from Incropera, de Witt (Principles of Heat and Mass Transfer)

Entry region in laminar pipe/channel flow





 steady state i.e. does not change in time, 2) fully developed laminar flow (Re<2000) with constant pressure gradient, 3) flow is only in x-direction i.e. U=U(y), V=0



Wall boundary conditions Velocity: No-slip wall u(+h) = u(-h) = 0

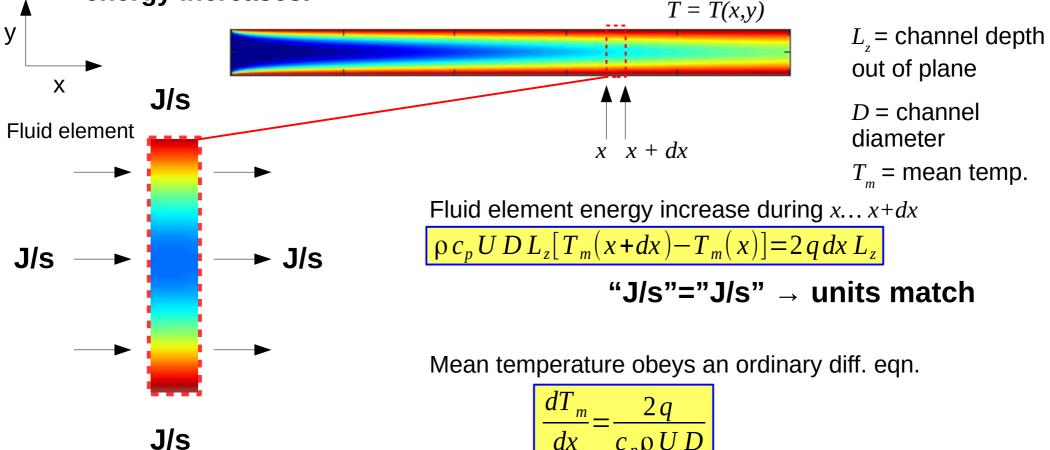
Practical question 1: two parallel plates are heated. How long distance should the fluid travel between the plates to reach a target temperature?

 \rightarrow Need to find T_m(x)

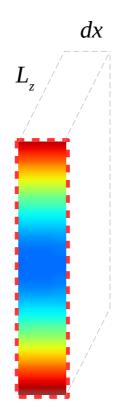
Energy balance for a fluid element between heated parallel plates

(relevance: finding mean temperature in streamwise direction)

Wall provides a heat flux q [W/m²] to the fluid so that a fluid element thermal energy increases.



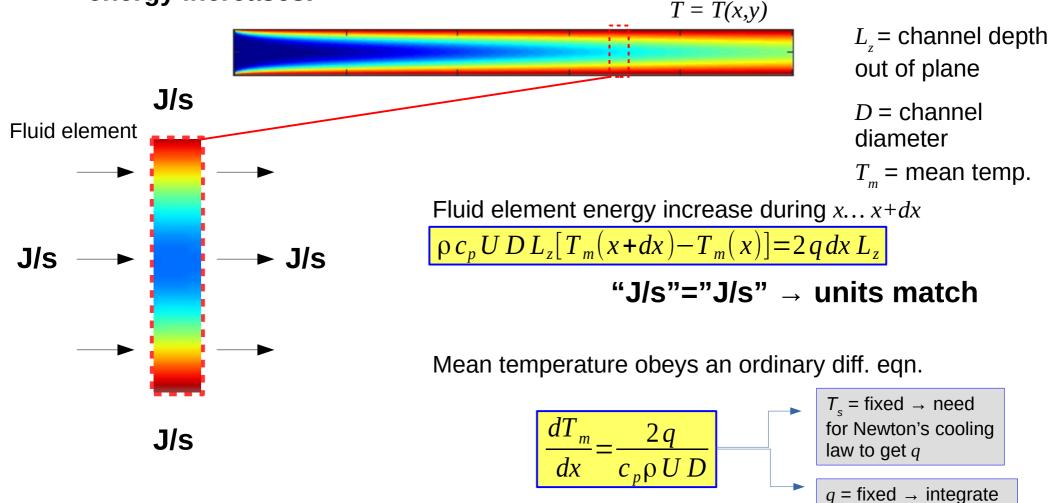
Note that the length of the surface element in z-direction cancels out



Power escaping through top and bottom plates $= 2 q dx L_z$

Energy balance for a fluid element between heated parallel plates (relevance: finding mean temperature in streamwise direction)

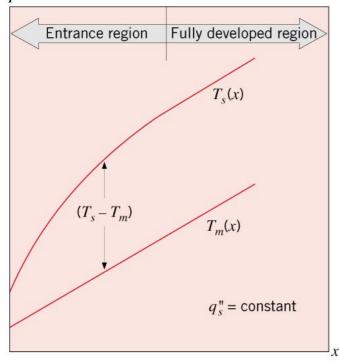
Wall provides a heat flux q [W/m²] to the fluid so that a fluid element thermal energy increases.

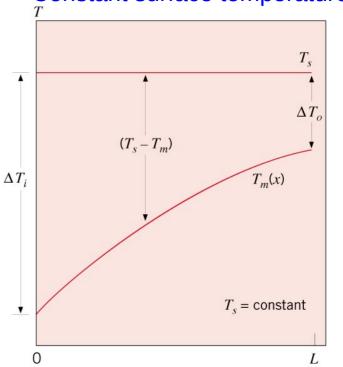


directly

Axial mean temperature in a pipe or channel

Constant surface heat flux





Constant surface temperature

Figs. from Incropera, de Witt (Principles of Heat and Mass Transfer)

For constant surface heat flux

Notes:

1) q is const. \rightarrow Surface temperature T_s follows.

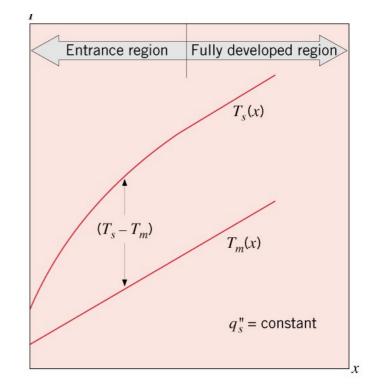
2) Surface temperature $T_s = T_s(x)$. If the surface is heated then T_s must increase along the channel when T_m(x) increases.

3) Newton's Cooling law states: $T_s(x) - T_m(x) = const.$

$$\frac{dT_m}{dx} = \frac{2q}{c_n \rho UD} = \text{constant}$$

$$\int_{x=0}^{x} \frac{dT_m}{dx} dx = \int_{x=0}^{x} \frac{2q}{c_p \rho U D} dx$$

$$T_m(x) = T_m^{\rm in} + \frac{2q}{c_p \rho U D} x$$

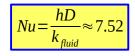


→ Linear increase in mean temperature

For constant surface temperature:

at fully developed conditions when *h=const.*

After thermal entry region



$$\frac{dT_m}{dx} = \frac{2q(x)}{c_p \rho UD} = \frac{2h(T_s - T_m)}{c_p \rho UD}$$

$$\int_{T_m=T_{in}}^{T_m(x)} \frac{dT_m}{T_s - T_m} = \int_{x=0}^{x} \frac{2h}{c_p \rho U D} dx$$

$$\log \frac{T_m(x) - T_s}{T_{in} - T_s} = \frac{-2h}{c_p \rho U D} x$$

$$\frac{T_m(x) - T_s}{T_{in} - T_s} = \exp\left(\frac{-2h}{c_p \rho U D}x\right)$$

\rightarrow Mean temperature increases according to exp function

 \rightarrow Total heat flux can be calculated based on log mean temperature

The main points:

0) We do not know q_{tot} because when T_s fixed then heat flux follows.

1) $T_s - T_m(x)$ is not constant i.e. q = q(x).

2) Thus, one can not use the average of inlet and outlet temperature in Newton's law directly because mean temp. increases non-linearly.

3) Need for log-mean temperature concept.

See: Incropera Ch. 8 Eqn. (8.43)

Practical question 2: two parallel plates are heated. **The plate thickness is d and the temperature outside the plates is known.** How long distance should the fluid travel to reach a target temperature?

 \rightarrow Need to find $T_m(x)$

Let's think that the fluid in the channel is warm and outside cooler. Thus the flowing fluid cools in the channel. $(T_m(x) = ?)$

We can express the lost heat (J/s):

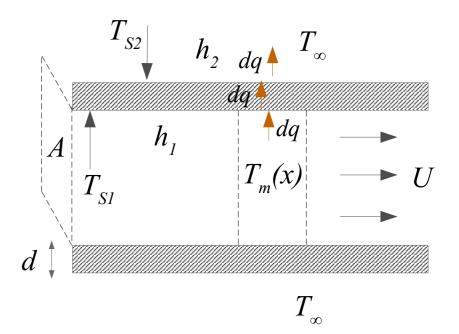
(1) Warm fluid to surface (W):

 $dq = h_1(T_m - T_{S1}) dA$

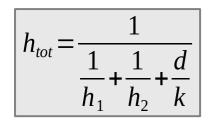
(2) Through the solid (W):

 $dq = k \frac{T_{S1} - T_{S2}}{d} dA$

(3) From solid outer surface to ambient (W): $dq = h_2(T_{S2} - T_{\infty}) dA$



Total heat transfer coefficient h_{tot} (W/m²K) can be easily solved from (1)-(3):

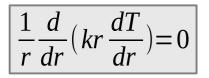


Energy balance for the cooling fluid element:

$$\frac{\rho U A c_p dT_m = \rho U L_z D c_p dT_m = -2 h_{tot} (T_m(x) - T_\infty) L_z dx}{\frac{dT_m}{dx} = \frac{-2 h_{tot}}{\rho U D c_p} (T_m(x) - T_\infty)}$$
$$\frac{T_m(x) - T_s}{T_{in} - T_s} = \exp\left(\frac{-2 h_{tot}}{c_p \rho U D} x\right)$$

In HW you need to use cylindrical coordinates to understand how the total heat transfer coefficient is then formed. (Sec. 3.3/Incropera)

Steady state heat eqn in cylindrical coordinates (BC's T_{s1} and T_{s2}):



Heat rate across a cylindrical surface

 $q_r = -k(2\pi r L)\frac{dT}{dr}$

We can integrate heat eqn twice to obtain:

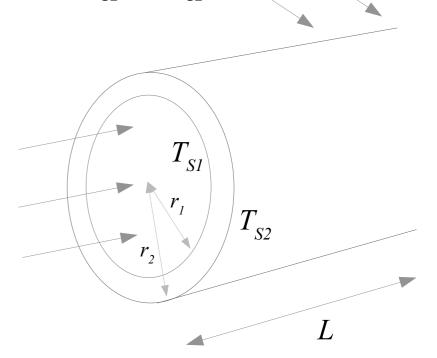
$$T(r) = \frac{T_{s_1} - T_{s_2}}{\ln(r_1/r_2)} \ln(\frac{r}{r_2}) + T_{s_2}$$

→ Heat transfer rate (W): $q_r = (2 \pi L k) \frac{(T_{s_1} - T_{s_2})}{\ln(r_2/r_1)}$

Thermal resistance:

$$R_{cond} = \frac{\ln \left(r_2 / r_1 \right)}{2 \pi L k}$$

Please see Sec. 3.3 for more help wrt HW.



The table below illustrates Nusselt numbers (non-dim.heat trans.coefficient) for different channel types with different boundary conditions. $D_h =$ hydraulic diameter.

C ross Section		$Nu_{D} = \frac{hD_{h}}{k}$		
	b a	(Uniform q _s ")	(Uniform T _s)	f Re _{Dh}
\bigcirc	-	4.36	3.66	64
a 🛄	1.0	3.61	2.98	57
a 🗾	1.43	3.73	3.08	59
a	2.0	4.12	3.39	62
b a b	3.0	4.79	3.96	69
a	4.0	5.33	4.44	73
b	8.0	6.49	5.60	82
0	00	8.23	7.54	96
Heated	00	5.39	4.86	96
\bigtriangleup	i = i	3.11	2.49	53

In HW3 we want to check if we can get the value Nu = 7.54 from numerical simulation.

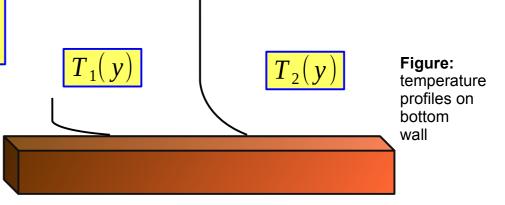
Table 8.1 from Incropera, de Witt (Principles of Heat and Mass Transfer)

Strong relevance to HW3 - Heat flux balance at the surface: Fourier's law (physics) equals to Newton's law (engineering)

Diffusive heat flux (Fourier) immediately at the wall on the fluid side = Heat flux from Newton's law of cooling

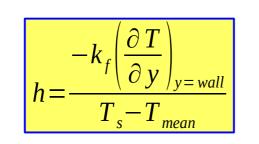
$$\left[-k_{f}\left(\frac{\partial T}{\partial y}\right)_{y=wall}=h(T_{s}-T_{mean})\right]$$

If temperature gradient in wall-normal direction would be known at each x location \rightarrow we could calculate *h* (W/m²K) every single surface point



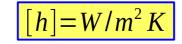
Note:

even in convective heat transfer the heat first diffuses i.e. conducts near the wall because $u, v \rightarrow 0$ next to the wall

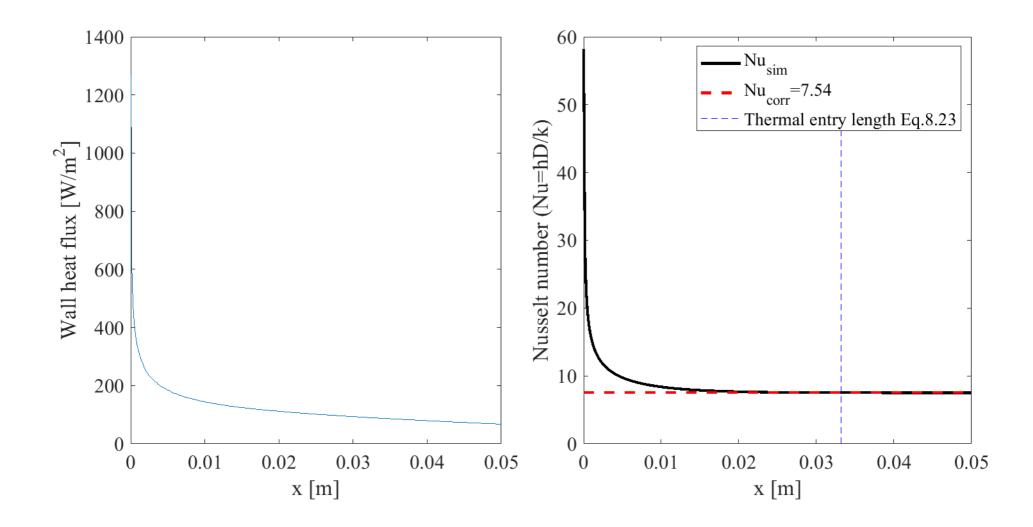


Think:

How can we maximize *h* ? How do *h* and heat flux vary in the flow direction ?



For constant wall temperature BC some example results using code heat2d.m



Lecture 3.2 Numerical approach: a Matlab solver for the 2d convection-diffusion equation to describe temperature transport

ILO 3: Student can write the governing equations of fluid/heat flow in a channel, estimate the energy balance and <u>estimate</u> temperature rise for different heating conditions. The student can confirm the channel heat transfer using generated/provided simulation data.