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Week 3: Convective Heat Transfer, 
Internal Flow and Numerical 

Solution in 2d



  

1) Energy conservation: “J/s thinking” 

2) Fourier’s law

3) Newton’s cooling law 

4) Energy transport equation – convection/diffusion equation

5) Momentum transport equation – Navier-Stokes equation

On the heat transfer course, we have “5 friends” 
i.e. 5 main principles that are used to explain

heat transfer phenomena  
 



  

Lecture 3.1 Theory: Flow through a fin system, 
governing equations and analysis 

ILO 3: Student can write the governing equations of fluid/heat 
flow in a channel, estimate the energy balance and estimate 
temperature rise for different heating conditions. The student 
can confirm the channel heat transfer using generated/provided 
simulation data.



  

Air flows between the fins. 
Heat transfers from the hot fin surfaces to 

the gas.  
Airflow 
Temperature
Common wall 
boundary conditions:

Type 1: Ts = known
Type 2: q

s 
= known

Airflow in: U
∞
 T

∞

Power (J/s)

Airflow 
velocity
Wall boundary 
condition:

No-slip: 
U=V=W=0m/s



  

Air flows between the fins. 
Heat transfers from the hot fin surfaces to 

the gas.  
Airflow 
Temperature
Common wall 
boundary conditions:

Type 1: Ts = known
Type 2: q

s 
= known

Airflow in: U
∞
 T

∞

Power (J/s)

Airflow 
velocity
Wall boundary 
condition:

No-slip: 
U=V=W=0m/s

−k f (∂ T
∂ y )

y=wall

=h(T s−T mean)



  

Energy balance (J/s thinking) for gas flow 
when the gas is heated at power P (W). 

“Control volume” thinking.

Energy balance for the gas (J/s): 

QOUT−Q IN=c p ṁΔT ave=P

Mass flow rate of the gas (kg/s):
ṁ=ρU A

A=cross-sectional area of control volume
U=flow average velocity

A

Control
Volume
(top view)



  

Fluid dynamics: Navier-Stokes equation for 
gases and liquids

Convection 
terms

Diffusion 
terms

∂U
∂ t

+U
∂U
∂ x

+V
∂U
∂ y

=-
1
ρ

∂ p
∂ x

+ν
∂2 U

∂ x2 +ν
∂2 U

∂ y 2

∂U
∂ x

+
∂V
∂ y

=0

Continuity equation
(conservation of mass)

Navier-Stokes equation
• (conservation of momentum)

Kinematic viscosity: ν=μ/ρ ,[ ν ]=m2/ s

∂V
∂ t

+U
∂ V
∂ x

+V
∂ V
∂ y

=-
1
ρ

∂ p
∂ y

+ν
∂2V

∂ x2 +ν
∂2 V

∂ y2

Pressure
gradient

Time
derivative



  

Power exiting
[W/m²]

Power entering
[W/m²]

∆x

∆z

∆y

Thermodynamics&heat transfer: 
Consider heat conduction and convection in 2d or 3d fluid (gas or liquid).

Divide the space into small (fixed) elements and carry out 
energy balance analysis for 1 of those elements.

Power entering
[W/m²]

Power exiting
[W/m²]



  

Derivation of convection-diffusion equation: 
Next we apply energy conservation law (“J/s thinking”)

for a small infinitesimal volume assuming conduction only 
(e.g. gas flow between two fins)

ΔQ x=[k
∂T (x +Δ x /2 , y , t)

∂ x
−k

∂T (x−Δ x /2 , y , t)
∂ x

]Δ y Δ z Δ t

Then: Divide both sides by ΔxΔyΔzΔt and take the limit when all 
Δ-variables → 0 → We get the convection diffusion equation.

Power exiting
[W/m²]

Power entering
[W/m²]

∆x

∆z

∆y

xx-∆x/2 x+∆x/2

ρ cp ΔT (x , y , z , t)Δ x Δ y Δ z=ΔQx+ΔQ y+ΔQz +ΔC x+ΔC y+ΔC z

ΔC x=cp ρ[−U (x +Δ x /2 , y , t)T (x+Δ x /2 , y , t)+U ( x−Δ x/2 , y , t )T (x−Δ x /2 , y , t)]Δ y Δ z Δ t

Conduction: energy change of element due to heat fluxes in x-direction during ∆t (J): 

Convection: energy change of element due to velocity transporting heat in x-direction during ∆t (J): 

Energy change of element during ∆t (J): 



  

Convection-diffusion equation

∂T
∂ t

+U
∂T
∂ x

+V
∂T
∂ y

=α
∂

2 T

∂ x2 +α
∂

2 T

∂ y2

→ Thermal energy is transported by convection (flow velocity) and 
diffusion (conduction). 
→ The convection diffusion equation for temperature is simply 
energy conservation law on local level of the fluid. 

T changes 
in given position
in time due to
convection and
diffusion

T is transported
by velocity
field (convection)

T is transported 
by thermal diffusion
(diffusion/conduction)

T=T(x,y) in steady state 2d laminar channel flow



  

Air temperature distribution in a plate fin heat exchanger (cross section)

Figure: courtesy of 
P.Peltonen

U∞

T ∞

- Thermal boundary layers
develop on surfaces

- Free boundary layers 
on outer surfaces

Focus on single gap



  

Fluid dynamical and heat transfer conditions

Reynolds number: Re=
U L
ν

Prandtl number: Pr= ν
α=

Viscous diffusion
Thermal diffusion

=
μ/ρ

k /(c pρ)

Nusselt number: Nu=
h L
k

=
Total heat transfer
Conductive heat transfer

Velocity scale Reference length scale

Heat transfer coeff.

Kinematic viscosity

Reference length scale



  

Entry region in laminar pipe/channel flow

Temperature profile

Velocity profile

Laminar flow thermal entry length :
(x / D)≈0.05 ReD Pr

Laminar flow viscous entry length:
(x /D)≈0.05 ReD

Figs. from Incropera, de Witt (Principles of Heat and Mass Transfer)



  

Channel flow velocity between two fins can be analytically 
solved assuming 

1) steady state i.e. does not change in time, 2) fully 
developed laminar flow (Re<2000) with constant pressure 

gradient, 3) flow is only in x-direction i.e. U=U(y), V=0

U
∂ U
∂ x

+V
∂ U
∂ y

=
−1
ρ

∂ p
∂ x

+ν
∂2U

∂ x2 +ν
∂2 U

∂ y 2

∂U
∂ x

+
∂V
∂ y

=0

const .=
1
ρ

∂ p
∂ x

=ν
∂2u

∂ y 2

u( y)=umax (1−
y2

h2 ) umax=-
dp
dx

h2

2ρν

Wall boundary conditions
Velocity: No-slip wall u(+h) = u(-h) = 0

Laminar flow2h



  

Practical question 1: two parallel plates are heated. 
How long distance should the fluid travel between the plates 
to reach a target temperature?

→ Need to find T
m
(x)   



  

Energy balance for a fluid element between 
heated parallel plates 

(relevance: finding mean temperature in streamwise direction)

Wall provides a heat flux q [W/m2] to the fluid so that a fluid element thermal
energy increases.

ρ cp U D L z[T m(x+dx )−T m( x)]=2 qdx L z

dT m

dx
=

2q
c pρU D

Fluid element energy increase during x… x+dx

J/s

J/s

J/s

J/s

L
z 
= channel depth

out of plane

D = channel
diameter

T
m
 = mean temp.

T = T(x,y)

x x + dx

“J/s”=”J/s” → units match

Mean temperature obeys an ordinary diff. eqn.

Fluid element

x

y



  

Note that the length of the surface element in 
z-direction cancels out

L
z 

dx

Power escaping through top and bottom plates=2 q dx Lz



  

Energy balance for a fluid element between 
heated parallel plates (relevance: finding mean 

temperature in streamwise direction)

Wall provides a heat flux q [W/m2] to the fluid so that a fluid element thermal
energy increases.

ρ cp U D L z[T m(x+dx )−T m( x)]=2qdx L z

dT m

dx
=

2q
c pρU D

Fluid element energy increase during x… x+dx

J/s

J/s

J/s

J/s

L
z 
= channel depth

out of plane

D = channel
diameter

T
m
 = mean temp.

T = T(x,y)

“J/s”=”J/s” → units match

Mean temperature obeys an ordinary diff. eqn.

Fluid element

q = fixed → integrate
     directly

T
s
 = fixed → need

for Newton’s cooling
law to get q



  

Axial mean temperature in a pipe or channel 

Constant surface heat flux Constant surface temperature

Figs. from Incropera, de Witt (Principles of Heat and Mass Transfer)



  

For constant surface heat flux

→ Linear increase in mean temperature

dT m

dx
=

2 q
c pρU D

=constant

∫x=0

x dT m

dx
dx=∫x=0

x 2 q
c p ρU D

dx

T m(x )=T m
in
+

2q
c p ρU D

x

Notes:

1) q is const. → 
Surface temperature 
T
s 
follows.

2) Surface 
temperature
T

s
 = T

s 
(x). If the 

surface is heated 
then T

s 
must increase

along the channel
when T

m
(x) 

increases. 

3) Newton’s 
Cooling law states: 
T

s 
(x) – T

m
(x) = const.



  

For constant surface temperature: 
at fully developed conditions when h=const.

→ Mean temperature increases according to exp function

dT m

dx
=

2q (x )

c pρU D
=

2 h(T s−T m)

c pρU D

∫T m=T in

T m( x) dT m

T s−T m

=∫x=0

x 2 h
c p ρU D

dx

log
Tm (x)−T s

T in−T s

=
−2 h

c p ρU D
x

Nu=
hD
k fluid

≈7.52

After thermal
entry region

T m( x)−T s

T in−T s

=exp (
−2h

c pρU D
x )

The main points:

0) We do not know q
tot 

because when T
s 
fixed 

then heat flux follows.

1) T
s
-T

m
(x) is not

constant i.e. q=q(x).

2) Thus, one can 
not use the average
of inlet and outlet 
temperature in 
Newton’s law directly
because mean temp.
increases non-linearly.

3) Need for log-mean 
temperature concept.  

q tot=h A ΔT lm

→ Total heat flux can be calculated based on log mean 
temperature

See: Incropera Ch. 8 Eqn. (8.43)



  

Practical question 2: two parallel plates are heated. 
The plate thickness is d and the temperature outside the 
plates is known. How long distance should the fluid travel 
to reach a target temperature?  

→ Need to find T
m
(x)  



  

Let’s think that the fluid in the channel 
is warm and outside cooler. Thus the flowing fluid 

cools in the channel. (T
m
(x) = ?)

ρU A c p dT m=ρU L z D c p dT m=−2 htot (T m(x )−T∞) Lz dx

T
m
(x)T

S1

T
S2 T

∞

d

T
∞

U

h
2

h
1

dq

dq

dq

We can express the lost heat (J/s):

dq=h1(T m−T S 1)dA

dq=k
T S 1−T S2

d
dA

dq=h2(T S 2−T ∞)dA

(1) Warm fluid to surface (W):

(2) Through the solid (W):

(3) From solid outer surface to ambient (W):

A

Energy balance for the cooling fluid element:

dT m

dx
=

−2 h tot

ρU D c p

(T m(x)−T ∞)

T m( x)−T s

T in−T s

=exp (
−2 h tot

c pρU D
x )

htot=
1

1
h1

+
1
h2

+
d
k

Total heat transfer coefficient 
h

tot
 (W/m2K) can be easily 

solved from (1)-(3):



  

In HW you need to use cylindrical coordinates to 
understand how the total heat transfer coefficient is

then formed. (Sec. 3.3/Incropera)

Steady state heat eqn in cylindrical coordinates (BC’s T
S1 

and T
S2

):

1
r

d
dr

(kr
dT
dr

)=0

Heat rate across a cylindrical surface

qr=−k (2π r L)
dT
dr

T
S1

T
S2

r
1

r
2

L

We can integrate heat eqn twice to obtain:

T (r )=
T S 1−T S 2

ln (r1/r 2)
ln (

r
r2

)+T S2

→ Heat transfer rate (W):

qr=(2 π L k )
(T S 1−T S 2)

ln (r2/r1)
Rcond=

ln (r2/r 1)

2 π L k

Thermal resistance:

Please see Sec. 3.3 for 
more help wrt HW.



  

The table below illustrates Nusselt numbers 
(non-dim.heat trans.coefficient) for different channel types 

with different boundary conditions. D
h 
= hydraulic diameter. 

Table 8.1 from Incropera, de Witt (Principles of Heat and Mass Transfer)

In HW3 we want to 
check if 
we can get the value
Nu = 7.54 from 
numerical simulation.



  

Strong relevance to HW3 - Heat flux balance at the surface: 
Fourier’s law (physics) equals to Newton’s law (engineering)

−k f (∂ T
∂ y )

y=wall

=h(T s−T mean)

Diffusive heat flux (Fourier) immediately at the wall on the fluid side = 
Heat flux from Newton’s law of cooling

h=

−k f (∂ T
∂ y )

y= wall

T s−T mean

T 1( y) T 2( y )

Think: 
How can we maximize h ?
How do h and heat flux vary in 
the flow direction ? 

[h]=W /m2 K

Note: 
even in convective
heat transfer 
the heat first diffuses
i.e. conducts near the
wall because 
u,v → 0 next to the 
wall

If temperature gradient in 
wall-normal direction would be 
known at each x location→ 
we could calculate h
(W/m2K) every single surface point 

Figure:
temperature
profiles on 
bottom
wall



  

For constant wall temperature BC some 
example results using code heat2d.m



  

Lecture 3.2 Numerical approach: a Matlab 
solver for the 2d convection-diffusion equation to 

describe temperature transport

ILO 3: Student can write the governing equations of fluid/heat 
flow in a channel, estimate the energy balance and estimate 
temperature rise for different heating conditions. The student 
can confirm the channel heat transfer using generated/provided 
simulation data.
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