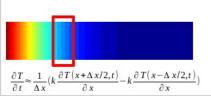


EEN-1020 Heat transfer

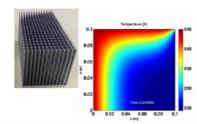
Week 4: Convective Heat Transfer External Flow

Prof. Ville Vuorinen November 15th - 16th 2022 Aalto University, School of Engineering

Week 1: Energy conservation, heat equation, conduction convection Fourier/Newton



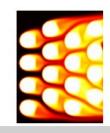
Week 2: Fin theory, conduction, intro to



Week 3: convective heat transfer – internal flow (channel)

Week 4: convective heat transfer – external flow (fin systems)

Week 5: natural convection, boiling, correlations

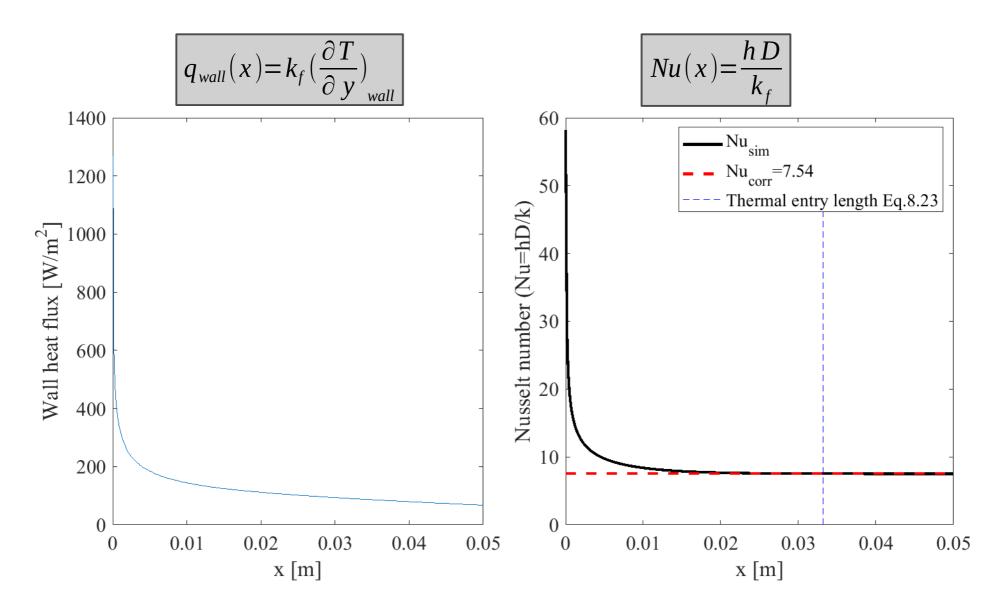


On the heat transfer course, we have "5 friends" i.e. 5 main principles that are used to explain heat transfer phenomena

- 1) Energy conservation: "J/s thinking"
- 2) Fourier's law
- 3) Newton's cooling law
- 4) Energy transport equation convection/diffusion equation
- 5) Momentum transport equation Navier-Stokes equation

Small recap from last week on wall heat flux $q_{wall}(x)$ along channel for laminar fluid flow

For const. wall temperature laminar channel flow, the local wall heat flux is needed to get energy balance to find the local Nusselt number



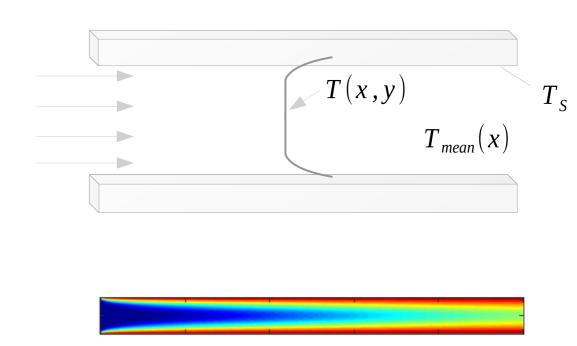
Relevance to HW3 - Heat flux balance at the surface

Diffusive heat flux (Fourier) immediately at the wall on the fluid side = Heat flux from Newton's law of cooling

$$k_f \left(\frac{\partial T}{\partial y} \right)_{y = wall} = h \left(T_s - T_{mean} \right)$$

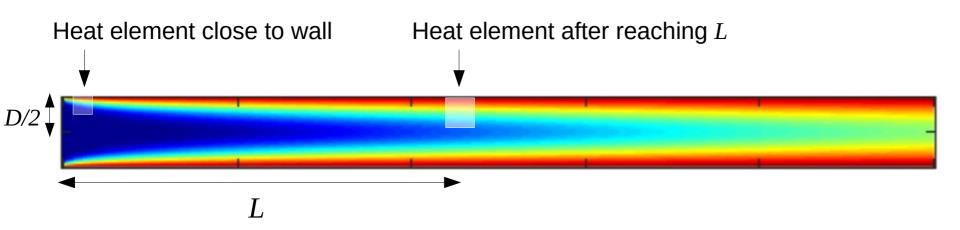
We can now calculate h=h(x) (W/m²K) at every point along the surface.

$$h = \frac{k_f \left(\frac{\partial T}{\partial y}\right)_{y=wall}}{T_s - T_{mean}}$$



Note: even in convective heat transfer the heat first purely diffuses i.e. conducts near the wall because $u,v \rightarrow 0$ next to the wall.

Thermal entry length derivation for laminar channel flow



- Heat transport in y-direction: Since V=0 it follows that heat diffuses in y-direction.
- Diffusion time to center line can be estimated as: $\tau_{diff} = (D/2)^2/\alpha$
- **Heat transport in** x**-direction:** During diffusion time heat is convected in x-direction distance L
- Approximate convection time: $\tau_{conv} = L/U$
- Equate: $\tau_{conv} = \tau_{diff}$

Our estimate: $(x/D) \approx 0.25 \operatorname{Re}_D Pr$ Text book formula for thermal entry length: $(x/D) \approx 0.05 \operatorname{Re}_D Pr$

Slide summary: physics and way of thinking ok but the prefactor (0.25) is wrong (not 0.05) but explainable and refinable.

Internal flow: When Reynolds number increases large enough (below >5300), pipe and channel flows become turbulent. Velocity field below indicates that also wall-normal velocity emerges along with chaotic swirling due to turbulence → much higher heat transfer via enhanced convection and mixing

https://link.springer.com/article/10.1007/s10494-013-9482-8

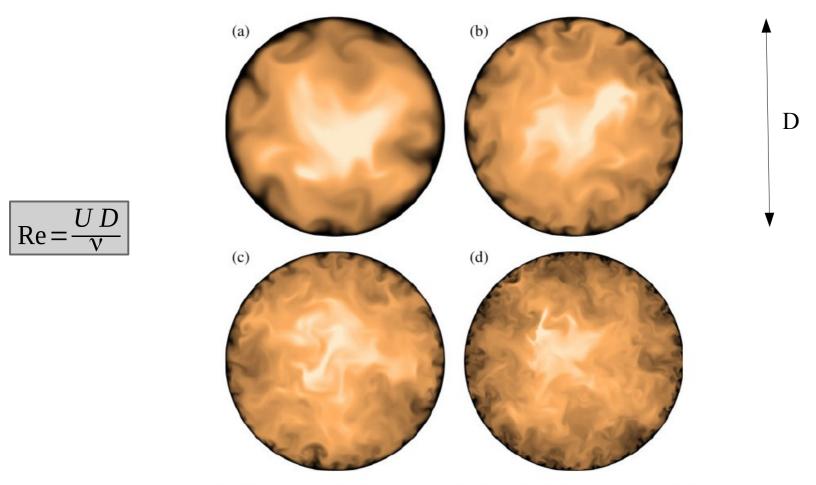


Fig. 4 Pseudo-colour visualisation of the instantaneous axial velocity u_z normalised by the bulk velocity U_b . **a** $Re_b = 5,300$; **b** $Re_b = 11,700$; **c** $Re_b = 19,000$; **d** $Re_b = 37,700$. Here, the colours vary from 0 (black) to 1.3 (white)

El-Khoury et al. (2013)

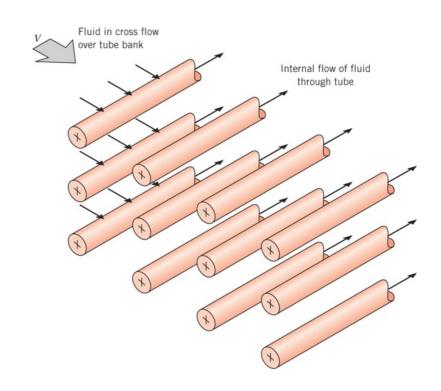
Lecture 4.1 Theory and experiment: Heat transfer of flow over a cylinder

ILO 4: Student can formulate energy balance for external flow heat transfer systems and use basic correlations. The student can confirm the analysis using generated/provided simulation data.

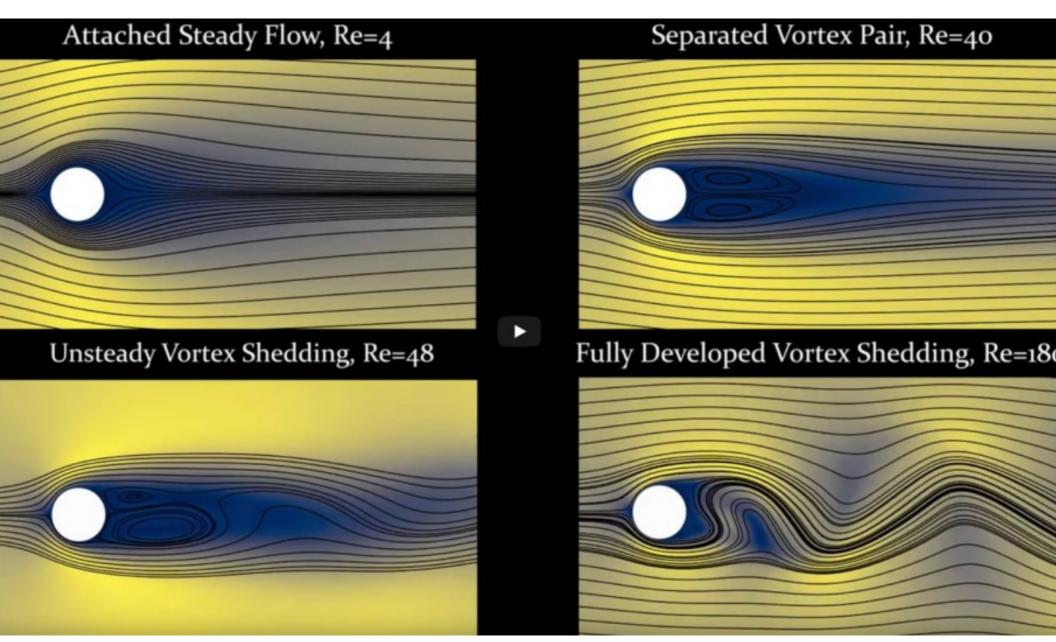
Example: Heat transfer increases when fluid velocity relative to the object increases → higher Reynolds number → higher heat transfer coefficient

Cylindrical fins are common in energy applications

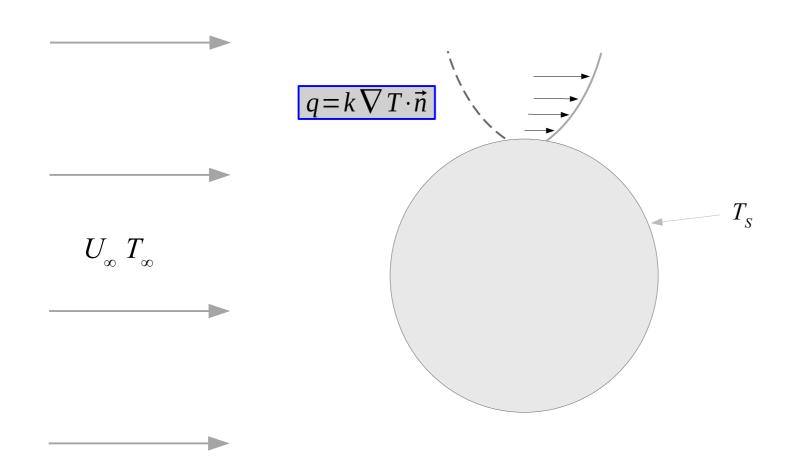
- Cylinder or pin fin beds very commonly used in heating and cooling applications
- E.g. cooling system in a ship where cool sea water is pumped through pipes and air is blown by fan over the array for AC cooling of cabins
- Understanding single cylinder heat transfer is really essential.



External flows: The fluid dynamical flow pattern over a cylinder depends on the Reynolds number (Re=UD/v). Video below courtesy of: J.Ramsay, M.Sellier, W.Ho

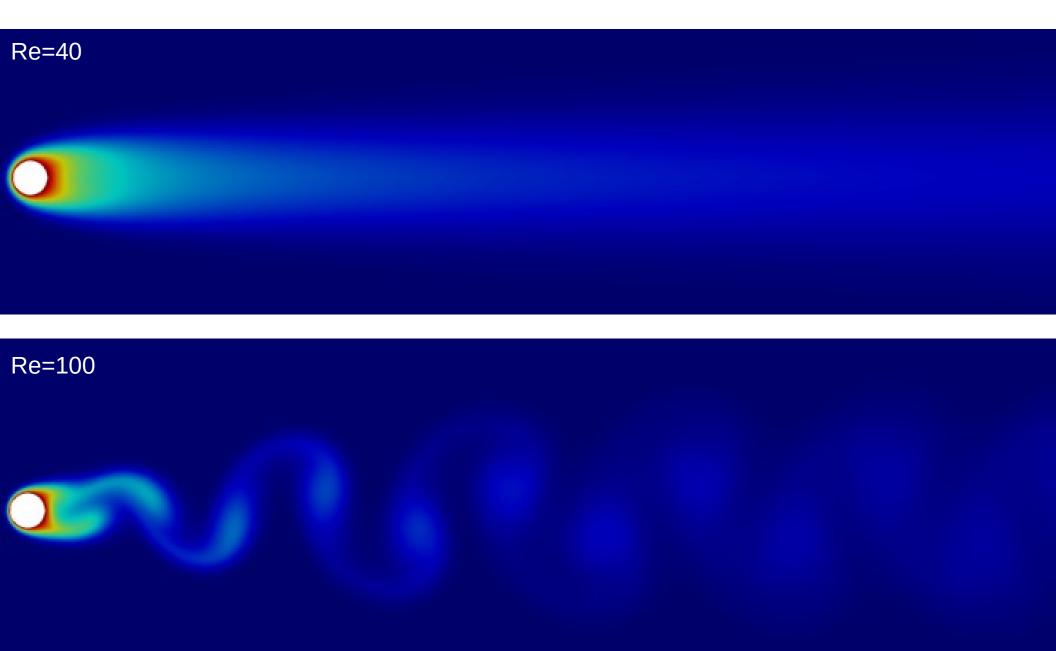


Heat transfer takes place on the surface of the cylinder

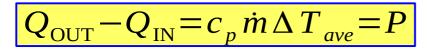


Two examples of instantaneous temperature fields from CFD simulation. **Note:** low Re \rightarrow thicker thermal boundary layer.

Courtesy of: Gizem Ersavas Isitman



Energy balance (J/s thinking) for gas flow when the gas is heated at power P (W). "Control volume" thinking.



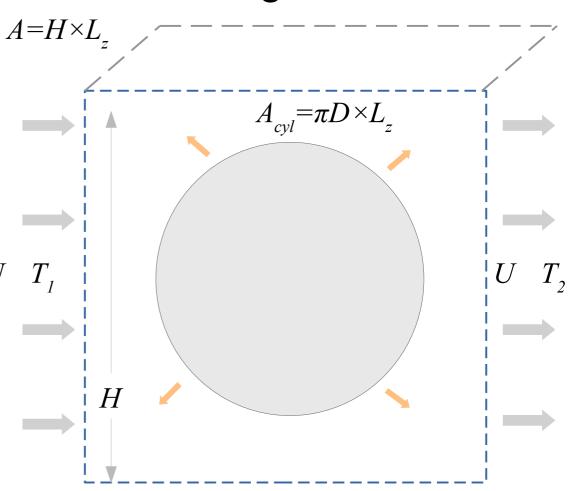
Mass flow rate of the gas (kg/s):

$$\dot{m} = \rho U A$$

Average temperature change:

$$\Delta T_{ave} = T_2 - T_1$$

A=cross-sectional area (normal to flow direction) of control volume U=flow average velocity



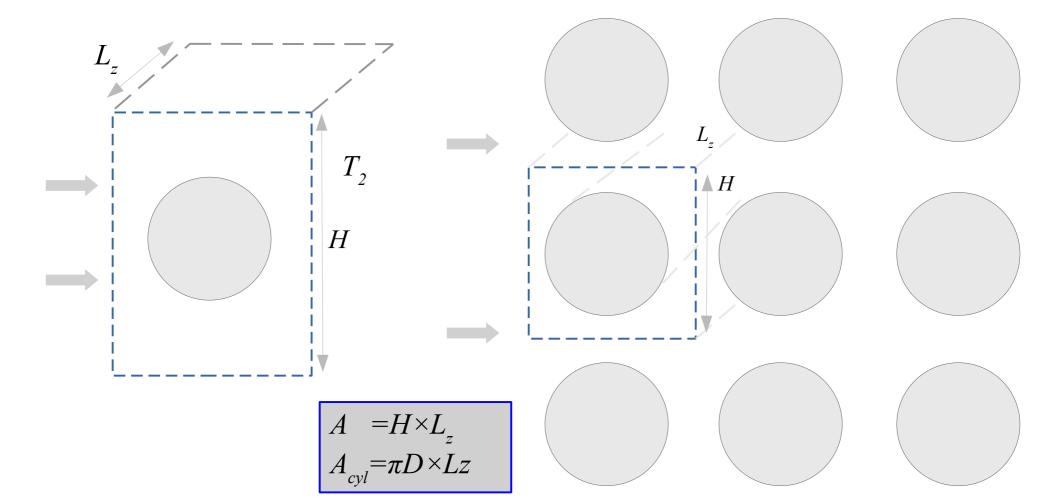
Note: Choosing H has been a common source of confusion.

Free cylinder:

 T_2 depends obviously on the chosen height of the control volume volume (same energy goes to smaller/larger volume). L_z cancels out (think 1m).

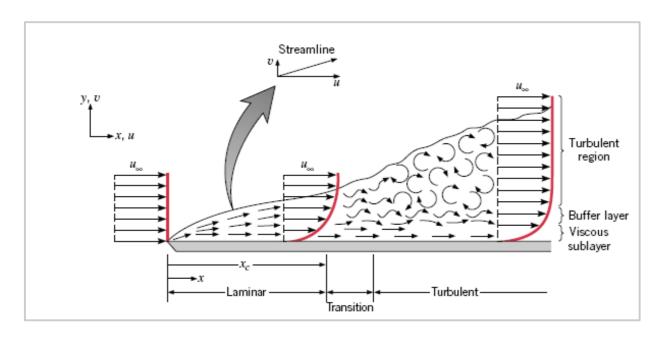
Cylinder bed:

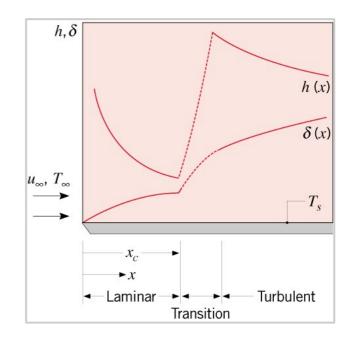
The natural height of control volume relates to the symmetry of the problem which enables estimation of temperatures inside and after pipe heat exchangers.



External flows: Many turbulent flow systems pose laminar to turbulence transition region before turbulence has developed. Heat transfer differs between different regions → needs to be taken into account. Example: free boundary layer.

Here: "Free" refers to "free of the opposite wall"





$$Re_c = \frac{\rho U_{\infty} x_c}{\mu}$$

Critical Reynolds number at the onset of laminar to turbulence transition.

$$10^5 < \text{Re}_c < 3.10^6$$

 $U/U_{\infty} = 0.99$

$$\delta = \frac{5.0}{\left(\frac{U_{\infty}}{v_X}\right)^{1/2}} = \frac{5x}{\operatorname{Re}_x^{1/2}}$$

Laminar boundary layer thickness grows along the plate.

$$\delta/\delta_T = Pr^{1/3}$$

Thickness ratio between viscous/thermal BL's depends on *Pr.*

$$Nu_x = h_x x/k = 0.332 \operatorname{Re}_x^{1/2} Pr^{1/3}$$

Local Nusselt number scaling depends on Re_x and Pr.

Purpose of empirical heat transfer correlations:

For a broad range of Reynolds numbers and Prandtl numbers, express average heat transfer coefficient *h* in a non-dimensional form called Nusselt number: Nu=Nu(Re,Pr)

Different average Nusselt number correlations for heated cylinders have been developed

$$\overline{Nu}_D = \frac{\overline{h}D}{k}$$

Hilpert correlation (see Table 7.2)

$$\overline{Nu}_D = C \operatorname{Re}_D^m P r^{1/3}$$

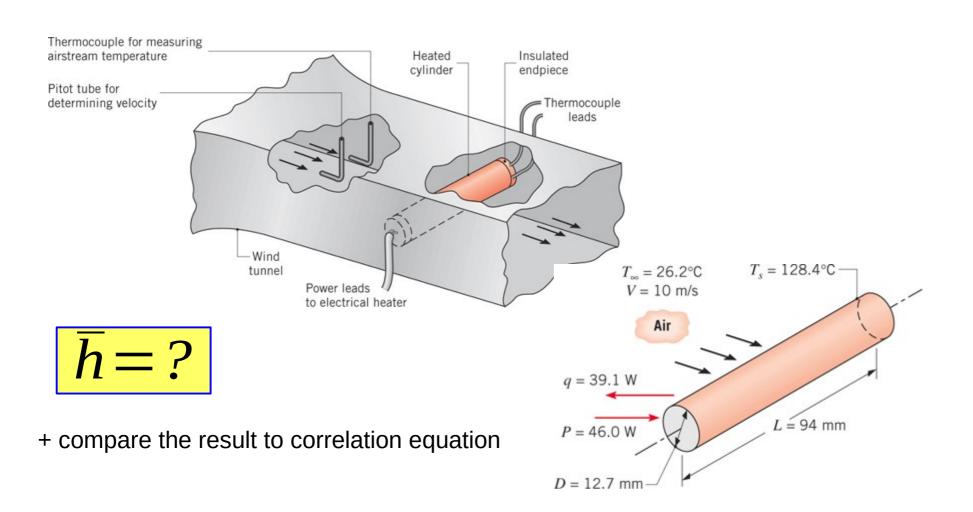
Churchill & Bernstein correlation (broad applicability)

$$\overline{Nu}_D = 0.3 + \frac{0.62 \operatorname{Re}_D^{1/2} P r^{1/3}}{\left[1 + \left(0.4/P r\right)^{2/3}\right]^{1/4}} \left[1 + \left(\operatorname{Re}_D/282000\right)^{5/8}\right]^{4/5}$$

Zukauskas correlation (broad applicability, see Table 7.4)

$$\overline{Nu}_D = C \operatorname{Re}_D^m P r^{1/3} \left(\frac{Pr}{Pr_s} \right)^{1/4}$$

Example 7.4: Heated cylinder in cross-flow



First, we get the convection coefficient directly.

$$\overline{h} = \frac{q}{A(T_s - T_\infty)} = 102 \, W/m^2 \cdot K$$

Zukauskas relation:

$$\overline{Nu}_D = C \operatorname{Re}_D^m Pr^n (Pr/Pr_s)^{1/4}$$

$$Re_D = 7992 \rightarrow C = 0.26$$
, $m = 0.6$, $Pr = 0.7 < 10 \rightarrow n = 0.37$

Table 7.2

Utilization of Zukauskas relation gives:

$$\overline{Nu}_D = 50.5$$

$$\overline{h} = \overline{Nu}_D k/D = 105 W/m^2 \cdot K$$

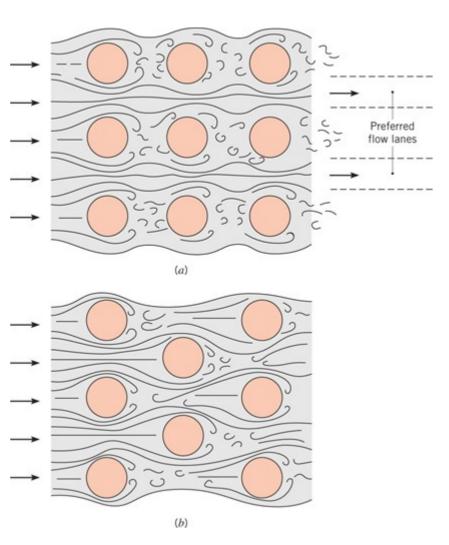
$$\bar{h} = 105 \, W/m^2 \cdot K$$
 \rightarrow close to first observed value $\bar{h} = 102 \, W/m^2 \cdot K$

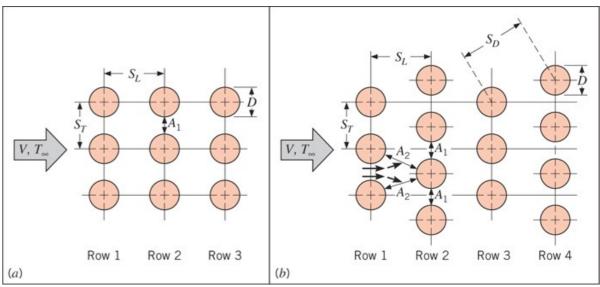
$$\overline{h} = 102 W / m^2 \cdot K$$

Lecture 4.2 Numerical approach: 2d heat transfer over a fin bed using Matlab

ILO 4: Student can formulate energy balance for external flow heat transfer systems and use basic correlations. The student can confirm the analysis using generated/provided simulation data.

Fin arrays

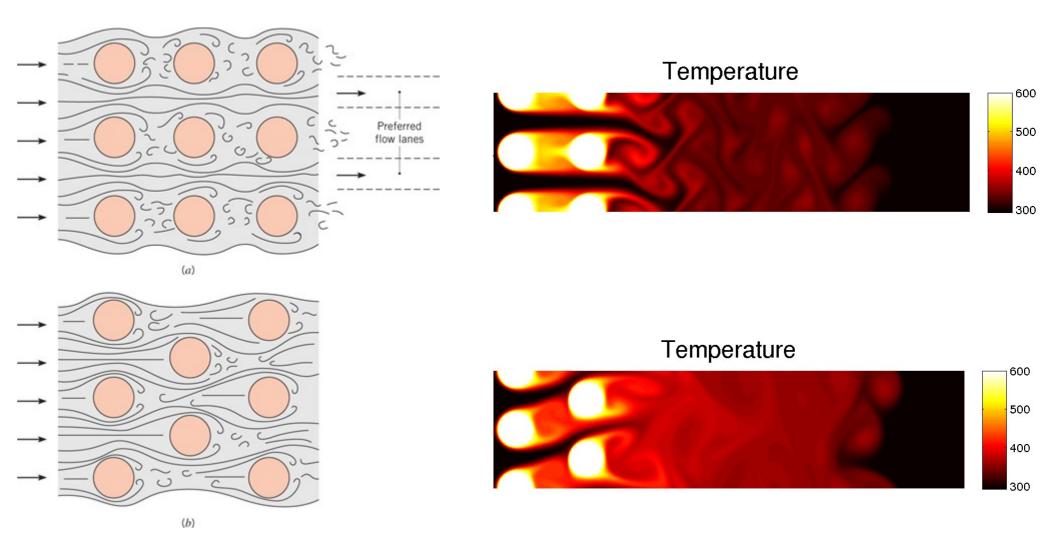




 S_T =transverse pitch

 S_L = longitudinal pitch

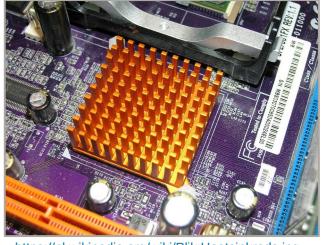
Aligned vs staggered configurations



What do you think which one would pose better heat transfer?

HW4: Pin fin configuration

In this session we will look mostly into heat transfer in a pin fin bed. Could occur in electronics cooling or air conditioning system.



https://pl.wikipedia.org/wiki/Plik:Heatsinkrods.jpg

Other assumptions during the session:

- 1) pin fin walls at T_{wall} =+29.6 deg C
- 2) inflow temperature is $T_{left} = +22.6 \deg C$
- 3) velocity field is fully developed and laminar and mean inflow velocity is close to 1m/s $D = 0.00125m \quad 0.0027m$

HW4: Convection-diffusion equation for temperature to estimate Nu

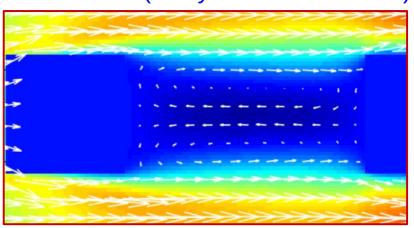
The Matlab session will focus on investigating heat transfer in a 2d fin bed using a provided velocity field which is assumed fixed. Constant wall T is assumed.

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial x^2} + \alpha \frac{\partial^2 T}{\partial y^2}$$

T=T(x,y) in steady state 2d flow with constant wall temperature BC

 0×10^{-3} 302 300 298 296 0.005 0.025 0.03 0.035 0.04 0.015x[m] $\times 10^{-3}$ y [m] 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Zoom to recirculation zone showing reverse flow (every fifth vector shown)



u=u(x,y) and v=v(x,y) are provided from

x[m]

separate CFD simulation. Assume "frozen flow" and zero velocity on the walls.

STEPS 1&2: Running code and saving the result.

- download the heat2dfins code from MyCourses and extract by right clicking mouse to new folder Week4. The code solves a convection-diffusion eqn for temperature using velocity obtained from another previous CFD simulation.
- run the code by clicking play. You can study either single fin case or multifin case using parameter. Here, let's first practice with a single fin so set the parameter Single=1 (Single=2 in the homework).

- create a new file called PostProcess.m Let us visualize the velocity field U(x,y) which comes indeed from the previous simulation (is given and assumed fixed herein).

```
a=load('FinsSingle.mat');

figure(2), clf, box

% first make image of the x-velocity field U(x,y)
imagesc([min(min(a.X)) max(max(a.X))],[min(min(a.Y)) max(max(a.Y))], a.U)

axis equal, axis tight, colormap jet, hold on, colorbar

print -dpng Velocity2dfins
```

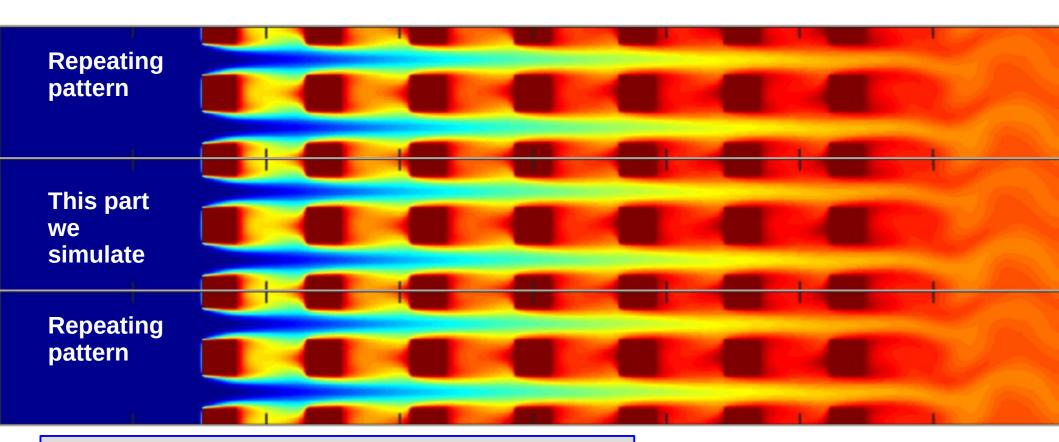

STEP 4: use the Hilpert correlation (for cylindrical fins) to estimate Nusselt number under these conditions for this single rectangular fin. You need also the Reynolds and Prandtl numbers.

STEP 5: can you get similar order of magnitude from the simulation result for Nusselt number from the single fin case?

$$Nu_{ave} = Nu = \frac{hD}{k} = C \operatorname{Re}_{D}^{m} Pr^{1/3}$$

We can think we are in fact modeling an "infinite", repeating pattern of fins $(T_s = const.)$

Row 1 Row 2 Row 7

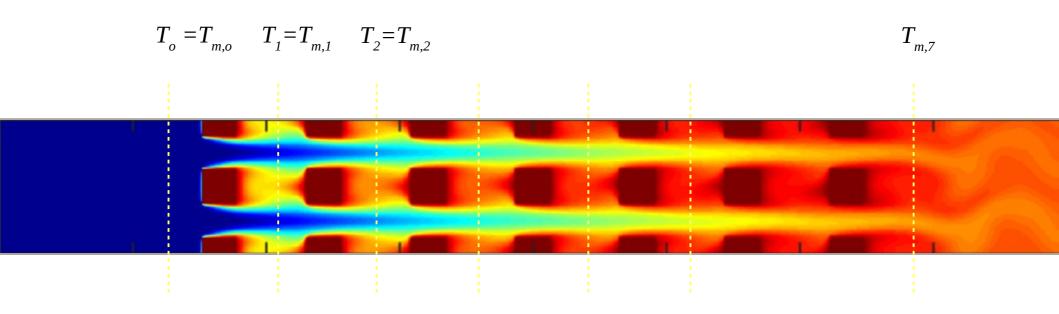


Question: How to use Newton's cooling law correctly and consistently in this situation? Is h constant? What is T_m ?

$$q = hA(T_s -$$

Things we are interested in: ΔT , h, $T_m(x)$

$$q = h_n A_{fin} (T_s - T_n) = c_p \rho U A_{in} (T_{n+1} - T_n)$$

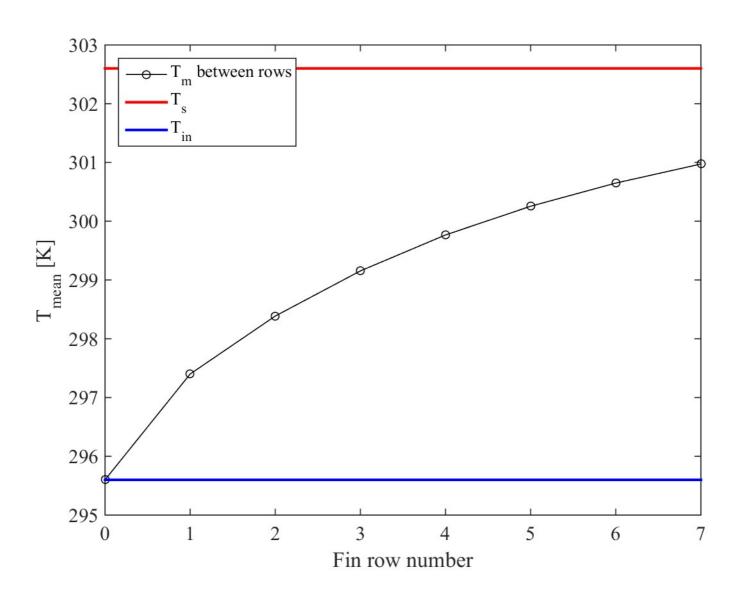


Note:

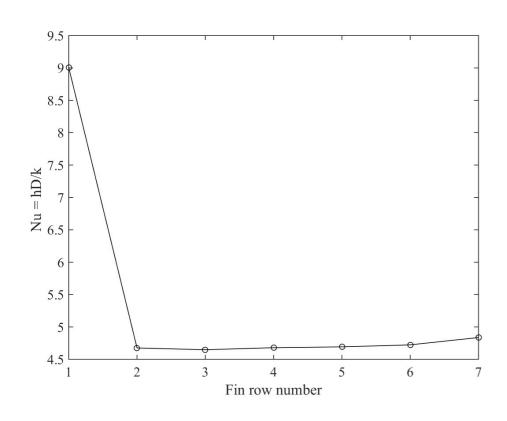
- we do not know if h is constant row-wise.
- we do not know if temperature jump per row is constant

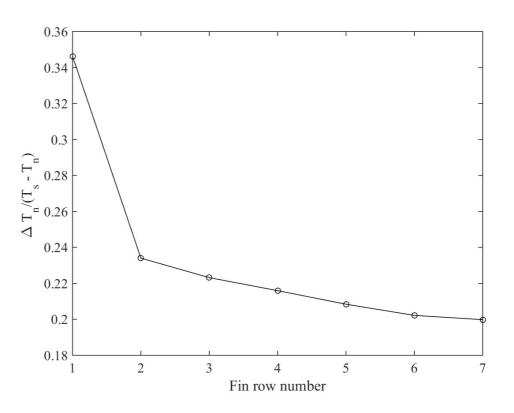
```
%Calculation of mean temperature and velocity
Tm = sum(T(iny,inx).*U)./(sum(U)); Um = mean(U);
```


Mean temperature after n fin rows



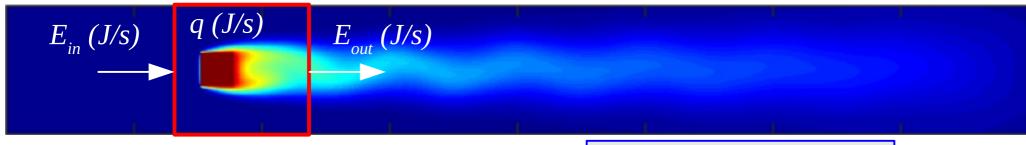
Relative temperature jump for fin array and Nusselt number





Control volume for energy conservation analysis:

In HW4 one needs to evaluate Nusselt numbers for single fin and multiple fin cases



$$A_{\text{in}} = L_y \cdot L_z$$
 and $A_{fin} = 4DL_z$

$$q = h_n A_{fin}(T_s - T_n) = c_p \rho U A_{in}(T_{n+1} - T_n)$$

