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1) Energy conservation: “J/s thinking” 

2) Fourier’s law

3) Newton’s cooling law 

4) Energy transport equation – convection/diffusion equation

5) Momentum transport equation – Navier-Stokes equation

On the heat transfer course, we have “5 friends” 
i.e. 5 main principles that are used to explain

heat transfer phenomena  
 



  

Lecture 5.1 Theory: Natural convection 
(free convection) 

ILO 5: Student can choose Nusselt number correlation 
equations for different situations including natural convection.



  

Warm fluids are lighter than cold fluids → ability to 
rise against gravity → buoyancy



  

Topics covered

• Governing equations in natural convection 

• Non-dimensional numbers

• Stable vs unstable configurations

• Boundary layers in natural convection

gravity



  

 2018: we switched off the fan in the class room demo system 
≈ 24W fixed and uniform heating power from the base plate. 

→ The physical heat transfer mechanisms are natural convection and radiation. 

Consequence of switching off the fan: 
the heat exchanger became extremely hot! 

For a very slow physical cooling mechanism:
dT/dt ≈ q/mc

p
 → e.g. 0.25K/s = 15K/min.



  

Heated air starts rising upwards and cool air
enters through the sides. Heat transfers from the 

hot fin surfaces to the gas.  

Airflow 
Temperature
Common wall 
boundary conditions:

Type 1: T
s
 = known

Type 2: q
s 
= known

Cool air 
enters: T

∞

Power (J/s)

Airflow 
velocity
Wall boundary 
condition:

No-slip: 
U=V=W=0m/s

Warm air exits by rising upwards: T
hot

g



  

Energy balance (J/s thinking) for gas flow 
when the gas is heated at power P (W). 

“Control volume” thinking.

U   
 
T

2

QOUT−Q IN=c p ṁΔT ave=P

Mass flow rate of the gas (kg/s)
into the system from sides = exiting
mass flow rate from the top:

ṁ=ρU top A top=ρU s A s

ΔT ave=T 2−T 1

Average temperature change:

P

T
1

g



  

Why a drink can cools? Which orientation offers 
faster cooling: horizontal vs vertical? Why?

q=hA s(T s−T∞ )

What parameters affect h and Nu ?

Newton

Note: radiation neglected on this course. 



  

Figure: CFD simulation of a cooling 
object and temperature field. 
V.Vuorinen (2016)



  

Governing equations (here 2d) in natural 
convection using the Boussinesq approximation

for the buoyancy force

∂U
∂ t

+U
∂U
∂ x

+V
∂U
∂ y

=
−1
ρ

∂ p
∂ x

+ν
∂2 U

∂ x2 +ν
∂2 U

∂ y2 −gxβ(T −T ∞)

∂V
∂ t

+U
∂V
∂ x

+V
∂ V
∂ y

=
−1
ρ

∂ p
∂ y

+ν
∂2 V

∂ x2 +ν
∂2 V

∂ y2 −g yβ(T−T ∞)

∂T
∂ t

+U
∂T
∂ x

+V
∂ T
∂ y

=α
∂2T

∂ x2 +α
∂2T

∂ y2

Buoyancy
force: tries
to promote
motion 
into
opposite
direction
from 
gravity

Navier-Stokes (momentum) 

Convection-diffusion for temperature (energy equation)



  

Derivation of thermal expansion coefficient for ideal gas
(β = 1/T)

β=-
1
ρ (

∂ρ

∂T )
p

=-
1
ρ ( ∂ [p /RT ]

∂T )
p

=
p

ρ R T 2=1/T

p=ρ RT

Note: for other fluids values of the expansion coefficient have been tabulated. 

Ideal gas law

Thermal expansion coefficient



  

Assumptions in Boussinesq approximation

ρ=ρo−(
∂ρ

∂ T )
p

ΔT

- Density is assumed to have a well defined mean part and a fluctuation part

- Thermodynamic pressure is assumed to be almost constant 
(often a very good assumption because speed of sound is typically high in 
comparison to other velocities*)

- Temperature will then be a function of density 

- When temperature of a point in space increases, the density decreases

- It leads to a buoyancy force promoting motion against gravity (“hot air balloon effect”)

- we can think that pointwise fluctuations of temperature from the mean 
(T’ = T – T

ref
) promote/drive the flow into motion

ρ=ρo−βρo ΔTor
Fluctuation part of density 
contributing to a buoyancy force 
in the Boussinesq approximation

*Note: e.g. in a typical flame pressure is almost constant but density and 
temperature depend very strongly on position (low density in hot parts).  



  

Important numbers

Gr=
gβ(T s−T ∞) L3

ν
2 =

Buoyancy force
Viscousforce

β=-
1
ρ (

∂ρ

∂T )
p

Thermal expansion coefficient

L→characteristic length scale of surface /object

β→ thermal expansion coefficient

Ra=
gβ(T s−T∞) L3

να =
Buoyancy force
Viscousforce

α=thermal diffusivity ,ν=kinematic viscosity

Grashof number

Rayleigh number (Ra and Gr closely related)



  

Differences in Nusselt number correlations 

Note: In forced convection the Reynolds and Prandtl numbers were of very high 
importance. Nu=Nu(Re,Pr).

Note: In natural convection the Rayleigh (and/or Grashof) number is typically 

the key driving parameter. Nu=Nu(Ra,Pr) or Nu=Nu(Gr,Pr).   

Note: here we do not discuss the mixed convection case.



  

Nusselt number correlation for 
a horizontal cylinder



  

¯NuD=0.60+
0.387 RaD

1/6

[1+(0.559/ Pr )9 /16
]

8/27

Ra=
gβ(T s−T∞) L3

να =
Buoyancy force
Viscousforce

gravity

RaD <1012

What happenswhen RaD →0?

Horizontal cylinder

N̄uD=
h̄ D

k



  

Nusselt number correlation for 
a vertical plate



  

NC creates flow against gravity → near-wall 
boundary layers → possibility for laminar to 

turbulence transition → critical Rayleigh number

Ra c=109

Critical Rayleigh number where flow becomes turbulent
at x=x

c

N̄u=0.68+
0.670 RaL

1 /4

[1+(0.492/ Pr )9 /16
]

4 /9

Example: Vertical plate average Nusselt number for 
laminar conditions (x<x

c
)

N̄uL=[0.825+
0.387 RaL

1 /6

[1+(0.492 /Pr )9 /16
]
8 /27 ]

2

https://www.youtube.com/watch?v=6ney_Vx00zU

Example: Vertical plate average Nusselt number for all
conditions (see a few slides ahead) 

https://www.youtube.com/watch?v=6ney_Vx00zU


  

Which way does a can cool faster in the fridge: 
horizontally or vertically ? 

N̄uD=0.60+
0.387 RaD

1/6

[1+(0.559/ Pr )9 /16
]

8/ 27

Ra=
gβ(T s−T∞) L3

να =
Buoyancy force
Viscousforce

N̄uL=[0.825+
0.387 RaL

1 /6

[1+(0.492 /Pr )9 /16
]
8 /27

]

2

D

L

D = 0.06m, L = 0.17m 

Horizontal cylinder: Vertical cylinder:

Rayleigh number (general length scale L)



  

Step 1: Conduction from
the wall to the fluid
and conduction in the thermal
boundary layer (TBL). 

Step 3: Accelerated flow 
forms viscous and 
thermal boundary layers 
around the can. 

Step 2: Heated fluid
starts rising upwards already
when conducting in the TBL

Step 5: fluid rises 
constantly and the hot air 
is “self-transported”
away from the object in 
a plume which poses 
fluid dynamical structures
(e.g. vortices, turbulence)

Step 4: fluid motion 
becomes 3d and 
turbulence
starts to transport 
heat from the top surface 

Some physical steps how heat transfer away
from a can in natural convection



  

Example 9.2: Estimate convective heat rate for 
glass window of a fireplace – relevance HW5

T ∞=23C

L=0.71m 
W=1.02m 

Fire

T s=232C

Ra=
gβ(T s−T∞) L3

να =1.813⋅109
>Rac

N̄uL=[0.825+
0.387 RaL

1 /6

[1+(0.492 /Pr )9 /16
]
8 /27

]

2

=147

h̄=
N̄uL k

L
=7.0 W / m2 K

q=h̄ A s(T s−T ∞)=1060 W

qrad=ϵ A s σ(T s
4
−T ∞

4
)=2355 W

Note: radiative heat transfer would be essential here:

Ambient air

First, estimate Ra for air rising along glass window:

Use the correlation valid at all conditions (Ra>Ra
c
):

Estimate heat transfer coefficient:

Heat rate from Newton’s law of cooling:



  

Flow in confinements



  

Unstable vs stable configurations

gravity

hot

hot

cold

cold



  

Case: Enclosed, tight water-filled kettle on the 
stove

Case: enclosed “kettle”
on the stove with 
space-dependent 
heating at the walls 
(linearly decreasing 
towards the top). 

Question 1: Does the 
schematic on 
stable vs unstable 
configuration explain
what happens here?

Question 2: Does  
a steady state solution
exist when time→ infinity?




  

Case: Enclosed furnace with space-dependent 
wall heating

Recall some previous slides: 
Stable vs unstable 
configuration

Case: enclosed “furnace”
with space-dependent 
heating at the walls 
(cold at top and bottom
parts, hot in the center). 

Question: Does the 
schematic picture from 
the previous slide 
(stable vs unstable 
configuration) 
explain what happens?




  

Enclosed cavities, heating from below

Ra<Rac=1708

N̄uL=
h̄ L
k

=1

Case 2: Thermally unstable but 
regular cell patterns

1708<RaL<5⋅104

Case 3: Flow is turbulent

3⋅105
<RaL<7⋅109

https://www.youtube.com/watch?v=OM0l2YPVMf8
https://www.youtube.com/watch?v=jFI5KaAqfXI

https://www.youtube.com/watch?v=gSTNxS96fRg&t=56s

https://www.youtube.com/watch?v=OM0l2YPVMf8
https://www.youtube.com/watch?v=jFI5KaAqfXI
https://www.youtube.com/watch?v=gSTNxS96fRg&t=56s
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