

EEN-1020 Heat transfer Week 5: Heat transfer via natural convection

Prof. Ville Vuorinen Nov. 22nd- 23rd 2022 Aalto University, School of Engineering

On the heat transfer course, we have "5 friends" i.e. 5 main principles that are used to explain heat transfer phenomena

1) Energy conservation: "J/s thinking"

- 2) Fourier's law
- 3) Newton's cooling law
- 4) Energy transport equation convection/diffusion equation
- 5) Momentum transport equation Navier-Stokes equation

Lecture 5.1 Theory: Natural convection (free convection)

ILO 5: Student can choose Nusselt number correlation equations for different situations including natural convection.

Warm fluids are lighter than cold fluids \rightarrow ability to rise against gravity \rightarrow buoyancy

Topics covered

- Governing equations in natural convection
- Non-dimensional numbers
- Stable vs unstable configurations
- Boundary layers in natural convection

2018: we switched off the fan in the class room demo system

 \approx 24W fixed and uniform heating power from the base plate.

 \rightarrow The physical heat transfer mechanisms are natural convection and radiation.

Consequence of switching off the fan:

the heat exchanger became extremely hot!

For a very slow physical cooling mechanism: $dT/dt \approx q/mc_p \rightarrow \text{ e.g. } 0.25\text{K/s} = 15\text{K/min.}$

Heated air starts rising upwards and cool air enters through the sides. Heat transfers from the hot fin surfaces to the gas.

Warm air exits by rising upwards: T_{hot}

Energy balance (J/s thinking) for gas flow when the gas is heated at power P (W). "Control volume" thinking.

$$Q_{\text{OUT}} - Q_{\text{IN}} = c_p \dot{m} \Delta T_{ave} = P$$

Mass flow rate of the gas (kg/s) into the system from sides = exiting mass flow rate from the top:

$$\dot{m} = \rho U_{top} A_{top} = \rho U_s A_s$$

Average temperature change:

 $\Delta T_{ave} = T_2 - T_1$

Why a drink can cools? Which orientation offers faster cooling: horizontal vs vertical? Why?

Newton

$$q = hA_s(T_s - T_\infty)$$

What parameters affect h and Nu ?

Note: radiation neglected on this course.

Figure: CFD simulation of a cooling object and temperature field. V.Vuorinen (2016)

Navier-Stokes (momentum)

Convection-diffusion for temperature (energy equation)

$$\frac{\partial T}{\partial t} + U \frac{\partial T}{\partial x} + V \frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial x^2} + \alpha \frac{\partial^2 T}{\partial y^2}$$

Derivation of thermal expansion coefficient for ideal gas $(\beta = 1/T)$

Ideal gas law

 $p = \rho RT$

Thermal expansion coefficient

$$\beta = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_p = -\frac{1}{\rho} \left(\frac{\partial [p/RT]}{\partial T} \right)_p = \frac{p}{\rho R T^2} = 1/T$$

Note: for other fluids values of the expansion coefficient have been tabulated.

Assumptions in Boussinesq approximation

- Density is assumed to have a well defined mean part and a fluctuation part

$$\rho = \rho_o - \left(\frac{\partial \rho}{\partial T}\right)_p \Delta T$$

$$\rho = \rho_o - \beta \rho_o \Delta T$$

Fluctuation part of density contributing to a buoyancy force in the Boussinesq approximation

- Thermodynamic pressure is assumed to be almost constant (often a very good assumption because speed of sound is typically high in comparison to other velocities*)

- Temperature will then be a function of density

or

- When temperature of a point in space increases, the density decreases
- It leads to a buoyancy force promoting motion against gravity ("hot air balloon effect")

- we can think that pointwise fluctuations of temperature from the mean $(T' = T - T_{ref})$ promote/drive the flow into motion

***Note**: e.g. in a typical flame pressure is almost constant but density and temperature depend very strongly on position (low density in hot parts).

Important numbers

Grashof number

$$Gr = \frac{g\beta(T_s - T_{\infty})L^3}{v^2} = \frac{Buoyancy force}{Viscous force}$$

Thermal expansion coefficient

$$\beta = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_p$$

Rayleigh number (Ra and Gr closely related)

 $Ra = \frac{g\beta(T_s - T_{\infty})L^3}{v\alpha} = \frac{Buoyancy force}{Viscous force}$

 $L \rightarrow$ characteristic length scale of surface / object

 $\beta \rightarrow$ thermal expansion coefficient

 $\alpha =$ thermal diffusivity, $\nu =$ kinematic viscosity

Differences in Nusselt number correlations

Note: In forced convection the Reynolds and Prandtl numbers were of very high importance. Nu=Nu(Re,Pr).

Note: In natural convection the Rayleigh (and/or Grashof) number is typically the key driving parameter. Nu=Nu(Ra,Pr) or Nu=Nu(Gr,Pr).

Note: here we do not discuss the mixed convection case.

Nusselt number correlation for a horizontal cylinder

Horizontal cylinder

$$N\overline{u}_D = \frac{\overline{h}D}{k}$$

Nusselt number correlation for a vertical plate

INC creates flow against gravity → near-wall boundary layers → possibility for laminar to turbulence transition → critical Rayleigh number

Critical Rayleigh number where flow becomes turbulent at $x\!=\!x_{_{c}}$

$$Ra_{c} = 10^{9}$$

Example: Vertical plate average Nusselt number for laminar conditions ($x \le x_c$)

 $\bar{Nu} = 0.68 + \frac{0.670 Ra_{L}^{1/4}}{\left[1 + (0.492/Pr)^{9/16}\right]^{4/9}}$

Example: Vertical plate average Nusselt number for all conditions (see a few slides ahead)

$$\bar{Nu}_{L} = \left[0.825 + \frac{0.387 R a_{L}^{1/6}}{\left[1 + (0.492/Pr)^{9/16}\right]^{8/27}}\right]^{2}$$

https://www.youtube.com/watch?v=6ney_Vx00zU

Which way does a can cool faster in the fridge: horizontally or vertically ?

Rayleigh number (general length scale L)

 $Ra = \frac{g\beta(T_s - T_{\infty})L^3}{\nu\alpha} = \frac{Buoyancy force}{Viscous force}$

D = 0.06m, L = 0.17m

Horizontal cylinder:

$$N\bar{u}_{D} = 0.60 + \frac{0.387 Ra_{D}^{1/6}}{[1 + (0.559/Pr)^{9/16}]^{8/27}}$$

Vertical cylinder:

Some physical steps how heat transfer away from a can in natural convection

Step 1: Conduction from the wall to the fluid and conduction in the thermal boundary layer (TBL).

Step 2: Heated fluid starts rising upwards already when conducting in the TBL

Step 3: Accelerated flow forms viscous and thermal boundary layers around the can.

Step 5: fluid rises constantly and the hot air is "**self-transported**" away from the object in a plume which poses fluid dynamical structures (e.g. vortices, turbulence)

Step 4: fluid motion becomes 3d and turbulence starts to transport heat from the top surface

Example 9.2: Estimate convective heat rate for glass window of a fireplace – relevance HW5

First, estimate Ra for air rising along glass window:

$$Ra = \frac{g\beta(T_s - T_{\infty})L^3}{v\alpha} = 1.813 \cdot 10^9 > Ra_c$$

Use the correlation valid at all conditions (Ra>Ra_c):

$$N\bar{u}_{L} = \left[0.825 + \frac{0.387 R a_{L}^{1/6}}{\left[1 + (0.492/Pr)^{9/16}\right]^{8/27}}\right]^{2} = 147$$

Estimate heat transfer coefficient:

$$\overline{h} = \frac{N \overline{u}_L k}{L} = 7.0 \, W / m^2 K$$

Heat rate from Newton's law of cooling: $q = \overline{h} A_s (T_s - T_\infty) = 1060 W$

Note: radiative heat transfer would be essential here: $q_{rad} = \epsilon A_s \sigma (T_s^4 - T_{\infty}^4) = 2355 W$

Flow in confinements

Unstable vs stable configurations

Case: Enclosed, tight water-filled kettle on the stove

Case: enclosed "kettle" on the stove with space-dependent heating at the walls (linearly decreasing towards the top).

Question 1: Does the schematic on stable vs unstable configuration explain what happens here?

Question 2: Does a steady state solution exist when time \rightarrow infinity?

Case: Enclosed furnace with space-dependent wall heating

Temperature

Recall some previous slides: Stable vs unstable configuration

Case: enclosed "furnace" with space-dependent heating at the walls (cold at top and bottom parts, hot in the center).

Question: Does the schematic picture from the previous slide (stable vs unstable configuration) explain what happens?

Enclosed cavities, heating from below

https://www.youtube.com/watch?v=OM0I2YPVMf8 https://www.youtube.com/watch?v=jFI5KaAqfXI

$$Ra < Ra_{c} = 1708$$

$$N\overline{u}_L = \frac{\overline{h}L}{k} = 1$$

Case 2: Thermally unstable but regular cell patterns

 $1708 < Ra_L < 5.10^4$

Case 3: Flow is turbulent $3 \cdot 10^5 < Ra_L < 7 \cdot 10^9$

https://www.youtube.com/watch?v=gSTNxS96fRg&t=56s