MS-EV0004 Vertex operator algebras (Periods II and III)

- Lecturer: Shinji Koshida (shinji.koshida@aalto.fi)
- Lectures
 - Fridays 12—14
 - M3 (this room)
- Exercises
 - every two weeks on Fridays 14—16 (First session -> 4.11)
 - M3 (during period II -> M2 during period III)

MS-EV0004 Vertex operator algebras (Periods II and III)

- Credits: 5
- Grading: pass/fail
- There is no exam. Grading is based on contribution to exercises.
- To pass, do either
 - give a presentation solving one problem during the session, or
 - submit a solution to one problem after the session

for each exercise sheet.

Why VOA?

VOA = Vertex operator algebra

Conformal field theory (CFT) in two dimensions (Physics!)

Quantum field theory with large symmetry (= very nice QFT)

$$\psi(z)\varphi(w) \sim (z-w)^h \eta(w) + \cdots$$

VOA explains what they are, what this equation means.

Why VOA?

VOA = Vertex operator algebra

Monstrous Moonshine

j-function (from modular forms)

$$j(\tau) = q^{-1} + 744 + 196884q + 21493760q^2 + 864299970q^3 + \cdots$$

Coefficients seem to be related to ...

dimensions of irreducible representations of \mathbb{M} : Monster finite group

VOA explains why this happens (Borchards 1992 -> Fields Medal 1998).

Course plan

- 1. Lie algebras and representation
- 2. Formal calculus
- 3. Definitions of vertex algebra
- 4. Construction of examples (First goal!)
- 5. Vertex operator algebras
- 6. ??

References

- James Lepowsky and Haisheng Li, Introduction to Vertex Operator Algebras and Their Representations, https://doi.org/10.1007/978-0-8176-8186-9.
- Victor G. Kac, Vertex Algebras for Beginners, American Mathematical Soc., 1998.
- Edward Frenkel and David Ben-Zvi, Vertex Algebras and Algebraic Curves, American Mathematical Soc., 2004.

 James Humphreys, Introduction to Lie algebras and Representation Theory, GTM