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Problem 1.  Consider a SISO-system in a one-degree-of-freedom control 

configuration.  The connection between the real and nominal system is 
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By using the Nyquist stability criterion derive a condition to the system to be robustly 

stable. 

 

Solution.  In the one-degree-of-freedom configuration ry FF =  and the loop transfer 

function of the nominal system is  yGFL = .  The Nyquist curve is seen in the figure 

 

  

 

 

At each point )( iL  a circle with radius GL  describes the model uncertainty such 

that the real curve is ceratinly inside the circle.  Assuming that the nominal system is 

stable (no poles in RHP), the closed loop system is robustly stable exactly when the 

Nyquist curve does not encircle the critical point (-1,0).  That can be expressed as (see 

figure) 
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and further 
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The result is the same as in the textbook formulas (6.28) and (6.29). 

 

 

Problem 2.  Consider the first order process 
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with parameter uncertainties such that  3,,2  k .  The system is modelled with  
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in which the nominal model is chosen to be the first order model without delay 
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Discuss possible candidates for the function )(sG . 

 

Solution. 

To be exact, an accurate uncertainty area in each frequency of the complex function 

)( iGP  should be determined (corresponding to the parameter variations).  This is 

very difficult, however, and in practice an approximate solution with uncertainty 

circles is used; see the solution to problem 1 and the equation 
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The largest relative error must be determined 
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(  means all possible models when the parameters vary within the given intervals). 

 

Then we can take 
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To calculate )(Il choose the values 2, 2.5 and 3 for each variable (  ,,k ).  That 

does not necessarily describe the worst possible situation, but it is a step to the right 

direction.  For the functions )(Il we obtain 2733 = curves, which are shown in the 

figure 

 



  

The curve )(Il  must at each freqiency be larger than the dotted curves.  It is seen 

that the value of )(Il  in small frequencies is 0.2 and 2.5 in large frequencies.  For a 

candidate of G  try a first order model, which corresponds to this behaviour 
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From the solid line it is seen that this is pretty good except near the frequency 1=  

where )(1 sG is a little too small to cover all uncertainties.  Increase the magnitude a 

bit near that particular frequency 
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which is good (dash-dotted line in the figure).   

  

 

 

Problem 3.  Consider the process described in Exercise 5, Problem 1 with the 

exception that the process model is uncertain.  The true system is 
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in which the relative uncertainty has been modeled as 
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Is the controlled (closed loop) system robustly stable? 

 

Solution.   

 

The process model and controller were 
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As noticed in problem 27 the determination of the relative error G  is difficult.  Often 

a simple error model is used, e.g. the first order transfer function 
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where r0 is the relative error of the stationary state, 1/ is approximately that angular 

frequency, in which the relative error reaches the 100% level, and r is the relative 

error in high frequencies (typically 2r ).   

 

In the problem the relative error of the process model has been assumed to be 0.33 in 

small frequencies, about. 1 in frequency 0.1 rad/s and 5.25 in high frequencies. 

 

The system is robustly stable, if it holds for all frequencies  (textbook formula (6.29)) 
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in which the complementary sensitivity function is 
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From the figure it is seen that the system is not robustly stable, because the 

complementary sensitivity function T1 exceeds G/1  in frequencies above 0.1.  

 

By decreasing the gain of the  PI-controller from 1.13 to 0.31 (trial and error result) a 

robustly stable closed-loop system is obtained (curve T2). 



 

 

Problem 4.  Let a closed-loop SISO-system be stable.  Prove that the maximum delay 

that can be added to the process without causing closed-loop instability is 
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where PM is the phase margin of the (original) system and c is the gain crossover 

frequency. 

 

Solution. 

Let G be the original transfer function.  In the gain crossover frequency it holds 
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When pure delay is added to the process 
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which means that the gain crossover frequency remains the same.  For the phase  
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At the stability limit 
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from which 
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Problem 5. Let the weight of the sensitivity function be given as 
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Sketch a schema for the magnitude plot of the frequency response and 

investigate its characteristics.  What is the slope in the increasing part of the 

curve? What is the magnitude at frequency ω0? 

 

Generate a second order model, where the slope is twice as large as in the 

previous case.  Investigate again the characteristics.  What is the magnitude at 

frequency ω0? 

 

Solution:   
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, because 

B is “large” and A is “small”. 

 

The Bode diagram (amplitude) is shown below: 

 

Note that for the absolute value of the  term 1 j T+ in the frequency response 

it holds 
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higher frequencies 
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 increases 20dB/decade (slope = 1) from zero decibels at 1/ T = . 
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Note that in the lecture slides an example of Mixed Sensitivity Design was 

shown with the desired sensitivity weight 
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The second order model is 
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Similar calculus as above shows that the amplitude curve is as in the above 

figure but with the angular frequencies ( )1/2 1/2

0 0 0, ,A B   instead of 

( )0 0 0, ,A B   .  The curve increases 40 dB/decade, slope is 2.  Note that this 

is again the same as 
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Problem 6. Consider the angular frequencies , ,B c BT    which are used to define 

the bandwidth of a controlled system.  State the definitions.  Prove that when the 



phase margin is less than 90 degrees ( / 2PM  ) it holds 
B c BT    .  

Interpretations? 
 

Solution:  Definitions: 

 

:B  where S crosses 1/ 2 3dB − from below. 

   

:c  where L crosses 1 = 0 dB  (gain crossover (angular) frequency) 

 

:BT  where T crosses 1/ 2 3dB − from above. 

 

At the gain crossover frequency it holds 
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(Note that ( )cL j is a complex number and so 1 ( ) 1 ( )c cL j L j +  + .   

( )
2 2 2 21 1 1x jy x y x y+ + = + +  + + , except in some rare exceptional 

cases (when?)). 
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The figure shows the Nyquist diagram of L where the phase margin PM = 90 

degrees.  In the gain crossover frequency then 

 ( ( 1/ 2 3 dBc cS j T j = =  −   (The distance from the point (-1,0) is 

inversely proportional to the absolute value of S.  See lecture slides, Chapter 3). 

 



So, at ωc all the bandwidths would coincide. 

 

But when PM < 90 degrees  ( ( 1/ 2c cS j T j =  , which implies directly 

that 

 

S approaches from below 
B c    

T approaches from above 
BT c   . 

 

We can conclude that roughly all the frequencies described can be used to 

discuss bandwidth, describing the behaviour of the closed-loop system. 

 

 

Problem 7. Consider a SISO-system.  The maximum values of the sensitivity and 

complementary functions are denoted MS  and MT , respectively.  Let the gain and 

phase margins of a closed-loop system be GM (gain margin) and PM (phase 

margin).  Prove that 
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Solution: 

Start from the figure below, where the Nyquist diagram of the loop transfer 

function (L) has been presented. 
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Denote the phase crossover frequency by 180 (then the phase of L is  –180 

degrees).  By the definition of the gain margin 
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We obtain 
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Now use the abbreviations )( max 
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iTMT = , )( max 


iSM S =  

 

and it follows that 
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and the gain margin inequalities given in the problem follow easily.  Let us 

calculate the first as an example.    
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The inequality related to MS is derived correspondingly.  

 

Considering the phase margin note that 
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in which c is the gain crossover frequency (the gain of L is one in this 

frequency).  From the figure it can be seen that 
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and the inequalities related to phase margin follow directly.  (In the last form 

the following fact, obtained for example by the Taylor approximation, is used:  

when x is positive,  arcsin(x) > x.) 

 

The results show for example that if MT = 2, then 
29,5.1  PMGM . 

 



Sometimes the maximum values (  - norms) MS and MT are used as alternatives 

to gain and phase margins.  For example, demanding that 2SM , the often 

used ”rules of thumb” 30,2  PMGM  follow. 

 

  

 

 

 

 


