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Practicalities

Practical information for the rest of the course:

• Lecturer changes to Ville Kyrki, two weeks guest lecturer Gökhan Alcan.
○ Change may cause some overlap in topics and changes in notation.
○ For the rest of the course, we will not follow precisely Åström & 

Wittenmark.

• Homeworks will be more practice and programming-based.

• First quiz from this part in a week (Thu Nov 3 – Fri Nov 4).

• First exercise session related to this part on Wed Nov 2.



Syllabus

Topics for the rest of the course:

• Lecture 7 Discretization (28.10.)

• Lecture 8 Discrete PID (4.11.)

• Lecture 9 Disturbances (11.11.)

• Lecture 10 Optimal control in state space (18.11., Gökhan)

• Lecture 11 Introduction to stochastic optimal control (25.11., Gökhan)

• Lecture 12 Summary (2.12.)



Today

Let’s review:

• Sampling and Zero-order hold (+ notation used by me)

Then we go to:

• Options of discretization in control systems

• Discretization methods for designing discrete-time systems



Recap: Sampling
The bridge from continuous to discrete

• The world surrounding us is analog!

• Signal analysis and control, for the reasons discussed in the introduction of 
this course, is done via digital computers

• As a result, analog signals and systems have to be transformed to discrete and 
vice-versa

• This is done via sampling! The measured entities are called samples. The 
sampling takes place in regular intervals, say every Ts seconds. Hence,



The bridge from continuous to discrete

• Time interval Ts is known as the sampling interval

• The sampling frequency is                 

• The sampling angular frequency is

(Hz)

(rad/s)

• In general, a signal cannot be reconstructed uniquely by its samples

Recap: Sampling



The bridge from continuous to discrete

where 

Signal to be sampled Sampled signal

Recap: Sampling



Frequency range
of a signal

• Suppose that the Fourier transform of          exists, i.e., 

• Then,

• Since        is periodic

• Moreover, 

Did you discuss this earlier?



Frequency range

• As a result:

(bandwidth)



Frequency range

• As a result:

(bandwidth)



Sampling criterion/theorem

• Suppose          is a low-pass signal with                                     , e.g.,

• Then,          can be uniquely determined by its samples

if the sampling angular frequency is at least twice as big as     , i.e.,      

• The minimum sampling angular frequency, for which the inequality holds, is 
called the Nyquist angular frequency

bandwidth



• Reconstructing such a signal requires a low-pass filter with cut-off frequency:

• From the natural meaning of frequency, we understand that the fast changes 
of a signal in time domain correspond to the existence of high frequencies 
with high energy

• The bigger the bandwidth of a signal, the faster the changes in the time domain

Remarks on sampling



Remarks on sampling

• Signals with a limited bandwidth are called band-limited. If a signal is not 
band-limited, then obviously its perfect reconstruction is not possible. One can 
only approximate it!

• However we should choose the sampling period to be:

- small enough, so that information loss is small

- high enough, so that the system does not run out of memory

• The reconstruction of a signal might be adequate if            reduces to zero fast 
for             , which is the case in most practical systems



Sampling with Zero-Order Hold (ZOH)

• Sampling narrow and large-amplitude pulses which approximate impulses are 
in practice difficult to generate and transmit

• Therefore, it is often more convenient to generate the sampled signal in a form 
referred to as a zero-order hold (ZOH)

• Such a system samples xc at a given instant and holds that value until the next 
instant



Recap: Zero-Order Hold (ZOH) sampling

• A simple sampling method is ZOH, in which a sample is held till the next 
sampling instant



Recap: 
Discretization

• There are 2 main design approaches: 

(a) Discretize the analog controller

(b) Discretize the process and do the design totally in discrete time

A/D D/AController Process

Controller D/A Process A/D

Do you remember this from 
an earlier lecture?



Discretization methods

• We will see how we can transform the transfer function G(s) of an analog 
system in the s-domain to an equivalent transfer function G(z) of a discrete 
system in the z-domain.

•G(s) can be transformed to G(z) by 3 different approaches:

- Rely on the use of numerical or analytical methods for solving differential 
equations describing the given system and for converting them to difference 
equations (earlier lecture)

- Match the response of continuous-time systems to specific inputs (e.g., impulse, 
step and ramp functions) to those of discrete-time systems for the same inputs

- Match the poles and zeros of G(s) in s-domain with the corresponding poles and 
zeros of G(z) in z-domain     

s-domain

pole

z-domain

No unique way!

Can we find simple approximations?

not algebraic!



Backward difference method

• Approximate the derivative by using the difference between the current and 
the previous sample divided by the sampling period, i.e.,

• The Laplace-transform of the derivative is

• The z-transform of its approximation is

Why do we want to 
compute a derivative in 
a practical controller?

How would integral approximation look like here?



Forward difference method

• Approximate the derivative by using the difference between the next and the 
current sample divided by the sampling period, i.e.,

• The Laplace-transform of the derivative is

• The z-transform of its approximation is

Causality?

How would integral approximation look like here?



Time-domain integrals

• Let’s consider the forward-difference approximation

• Solving for y[k+1] gives (incremental form) 

• This is Euler approximation of 

• Can also be written as a sum

• Similarly, for y

• Incremental Euler approximation is commonly used in controller 
implementations, storing current value of the integral for the next iteration.

Note: this is the integral 
of d/dt y.

How about backward difference approximation?

Why do we want to 
compute an integral in 
a practical controller?

This is the integral of y.



Time-domain integrals

• Let’s consider the backward-difference approximation

• Solving for y[k+1] gives (incremental form) 

• Called backward (or implicit) Euler approximation 

• Can also be written as a sum

• Computing backward/implicit Euler integral requires iterative solution of each 
time step (e.g. Newton method), because of the reliance on the future (k+1) 
value of the derivative.

How about higher-order differential equations?

Compare to fwd:



Approximation of differential eqns by difference eqns

• Calculate the derivative by using the difference between 
the current and the previous sample divided by the 
sampling period, i.e.,

• The second derivative is therefore

• In general…



Impulse-invariance method

• The impulse response is given by

• From       , via discretization, we get           , where      is the sampling period

• From            , using z-transform, we derive G(z) in z-domain, i.e.,

• Using this method, frequency and step responses are not preserved
• The discrete system will be stable if the original analog system is stable

Proof on next two slides



Impulse-invariant method: LTI systems

• The impulse response of an LTI system can be written as follows:

• Each element’s time response contains every mode of the system (although 
some coefficients may be negligible)

• After sampling:

• Taking z-transforms

Skipped on lecture



Impulse-invariant method: LTI systems

• Hence, the z-transform always projects a stable pole in the s-domain to a 
stable pole in the z-domain → the discrete system will be stable if the original 
analog system is stable

• System H(z) has n poles:

Skipped on lecture



Recap: Step-invariance method

• The step response is given by

• The z-transform of             is given by 

• The final transformation is thus given by

• Neither the frequency nor the impulse responses are preserved

• The corresponding step response in discrete time is given by 



Bilinear or Tustin method

• Using this method, the conversion of G(s) in z-domain is

• Represents one of the most popular methods because the stability of the 
analog system is preserved

• This transformation has a unique mapping between the s-domain and the 
z-domain, as shown below:

Corresponds to trapezoid integration



Bilinear or Tustin method: Frequency response

• What is the relationship between Hc(jΩ) and H(ej𝜛)?

Recall that                              and                            . Substituting these into the bilinear 
transform formula, we get:

This nonlinear relationship is called “frequency warping”.



Bilinear or Tustin method: Frequency response

• The good news is that we don’t 
have to worry about aliasing.

• The “bad” news is that we have to 
account for frequency warping 
when we start from a discrete-time 
filter specification.



x

x
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Remark: direct design based on specifications

• A rational z-transform can be written as

• To compute the frequency response of            , we compute          at 

• But             represents a point on the circle’s perimeter

• Let 



x

Example

• Consider the low-pass filter

num = 1;                    % numerator
den = [ 1  -0.4 ];         % denominator
H = tf(num,den,0.1);  % discrete-time transfer function with sampling time 0.1s
bode(H)                     % plots the bode plot



Learning outcomes

By the end of this lecture, you should be able to:

• Understand what happens to the signal when sampling

• What is the sampling frequency so that one can reconstruct the signal

• Consider the options of discretization in control systems

• Use discretization methods for designing discrete-time systems


