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Practicalities

Practical information for the rest of the course:

e | ecturer changes to Ville Kyrki, two weeks guest lecturer Gokhan Alcan.

o Change may cause some overlap in topics and changes in notation.

o For the rest of the course, we will not follow precisely Astrom &
Wittenmark.

e Homeworks will be more practice and programming-based.
e First quiz from this part in a week (Thu Nov 3 — Fri Nov 4).

* First exercise session related to this part on Wed Nov 2.
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Syllabus

Topics for the rest of the course:

e | ecture 7 Discretization (28.10.)

e | ecture 8 Discrete PID (4.11.)

e | ecture 9 Disturbances (11.11.)

e | ecture 10 Optimal control in state space (18.11., Gokhan)

¢ | ecture 11 Introduction to stochastic optimal control (25.11., Gokhan)

¢ | ecture 12 Summary (2.12.)
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Today

Let’s review:

e Sampling and Zero-order hold (+ notation used by me)
Then we go to:
e Options of discretization in control systems

¢ Discretization methods for designing discrete-time systems



Recap: Sampling

The bridge from continuous to discrete

¢ The world surrounding us is analog!

e Signal analysis and control, for the reasons discussed in the introduction of
this course, is done via digital computers

e As a result, analog signals and systems have to be transformed to discrete and
vice-versa

e This is done via sampling! The measured entities are called samples. The
sampling takes place in regular intervals, say every I’ seconds. Hence,

zk] = z(kTs)




Recap: Sampling

The bridge from continuous to discrete

e Time interval 7' is known as the sampling interval

e The sampling frequency is fs =1/T, (Hz)
e The sampling angular frequency is ws = 27/ Ts = 2w f, (rad/s)

* [n general, a signal cannot be reconstructed uniquely by its samples

x,(2)
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Recap: Sampling

The bridge from continuous to discrete

Signal to be sampled Sampled signal

P(t)
>G >

where

xc(t) P(t) -xp(t)
XC( sj‘
‘ ‘ x,(0) ‘
0 ot 0 Ts t 0 Ts 2Ts
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Frequency range Did you discuss this earlier?
of a signal

* Suppose that the Fourier transform of z,(t) exists, i.e., F{z,(t)} = X, (jw)

 Then, X, (jw) = F{zp(t)} = Flae(t)p(t)} = o Xe(jiw) * P(jw)
* Since p(t) is periodic
p(t) = Z ape’®@st (Fourier series)
k=—o0

Ts
2

1
_/ -Tn’ws _ — ]nws — Vn

= p(t) = f Z 7!

k=—o0

* Moreover, F{e/****} = 2mé(w — kw,) = P(jw) Z 0w = nuws), ws = ;_W

n=——oo



Frequency range

* As a result:
1 oo
Xp(0) = 7 S Keljiw) % 8w — )
1 oo
= Z Xc(j(w—nws)) *d(w) (property of convolution)
1 oo
= X,(jw) = T Z Xe(j(w — nws))
S n=—o0
we > 2w Xp(jo)
| 1
TS
— o, 0 ?0 @ -0, 0 0, Y-@ a)s Q)+
Ko B ® -



Frequency range

e As a result:

Xc(J(w —nws)) xd(w) (property of convolution)

X,(jo)

ws < 2w

1
W
- abo 0 &)0 a

X (jw) <« spectrum of x(t)

v s
" a
/ y S o I
‘ ;o Y s ;o
‘ Y S ;N ron
/ / \ ‘ \ ’ \ / \
l / \ / \ J \ / .
. / \ 5 \ ’ \ ‘ .
‘ ‘ A ‘ \ ‘ Iy \ ‘ Iy

cut-off frequency

(bandwidth) “aliasing effect”




Sampling criterion/theorem

* Suppose z.(t) is a low-pass signal with X.(jw) =0,V |w| > wy, €.9.,

X, (jo)

— 0, 0 @,
bandwidth

e Then, z.(t) can be uniquely determined by its samples z.(nTs),n = 0,+1, 12, ...
If the sampling angular frequency is at least twice as big as wy, I.e.,

— 2_7T > )
Wg = TS wWo
* The minimum sampling angular frequency, for which the inequality holds, is
called the Nyquist angular frequency



Remarks on sampling

¢ Reconstructing such a signal requires a low-pass filter with cut-off frequency:

wo < We < Wg — Wo

x,(¢) QX 220) (%) gy 20500
/ Low-Pass ideal filter

P(z) H(jw)
Removed /I N T/,\/ /'A‘\ Removed

I 1
\ / \\ ! ' ! \\ /
/ \ 1 1 / \
1 \ ! ! / \
/ \ | 1 . \
7 \ I I / \
/ \ 1 1 / \
/ \ 1 | . \
/ | \ 1 1 / | \
y i A (4 A Y

| 1
-, 0 . @

Passes

e From the natural meaning of frequency, we understand that the fast changes
of a signal in time domain correspond to the existence of high frequencies
with high energy

* The bigger the bandwidth of a signal, the faster the changes in the time domain
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Remarks on sampling

e Signals with a limited bandwidth are called band-limited. If a signal is not
band-limited, then obviously its perfect reconstruction is not possible. One can
only approximate it!

e However we should choose the sampling period to be:
- small enough, so that information loss is small
- high enough, so that the system does not run out of memory

* The reconstruction of a signal might be adequate if X (jw) reduces to zero fast
for w — oo, which is the case in most practical systems
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Sampling with Zero-Order Hold (ZOH)

e Sampling narrow and large-amplitude pulses which approximate impulses are
In practice difficult to generate and transmit

e Therefore, it is often more convenient to generate the sampled signal in a form
referred to as a zero-order hold (ZOH)

e Such a system samples x_ at a given instant and holds that value until the next
instant

x, (1)

hy(2)

@* X,(®) e
/\/l ™ > e
P |0 T, il

r 5 der Hold oLt
ero-oraer o Sample and Hold

till the next
sampling instant




Recap: Zero-Order Hold (ZOH) sampling

¢ A simple sampling method is ZOH, in which a sample is held till the next
sampling instant

x. (1)

hy(2)

@_. X,(1) e
/f ] >
P@t) |0 T, 1 {

t 5 der Hold P
ero-oraer o Sample and Hold

till the next
sampling instant

xo(t) = zp(t) * ho(t)

— Z x.(nTs)0(t — nTs) * ho(t)
— Z x:(nTs)0(t) * ho(t — nTy)

= zo(t) = Y a(nTy)ho(t — nTy)

n=——oo
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Recap: Do you remember this from
- ! - an earlier lecture?
Discretization

* There are 2 main design approaches:

(@) Discretize the analog controller

r(t)

Controller

DiA | u(t) >[ Process ]l&

J

(b) Discretize the process and do the design totally in discrete time




Discretization methods

e We will see how we can transform the transfer function G(s) of an analog
system in the s-domain to an equivalent transfer function G(z) of a discrete

system in the z-domain.
No unique way!

* (G(s) can be transformed to G(z) by 3 different approaches:

- Rely on the use of numerical or analytical methods for solving differential
equations describing the given system and for converting them to difference
equations (earlier lecture)

- Match the response of continuous-time systems to specific inputs (e.g., impulse,
step and ramp functions) to those of discrete-time systems for the same inputs

- Match the poles and zeros of G(s) in s-domain with the corresponding poles and
zeros of G(z) in z-domain

s-domain z-domain

pole S = Sp » = eSoTs«— not algebraic!

Al st Can we find simple approximations?



. Why do we want to
Backward difference method .onpute a derivative in

a practical controller?
e Approximate the derivative by using the difference between the current and
the previous sample divided by the sampling period, i.e.,

& Ofemer, LT =0 = IT) _ ol

e The Laplace-transform of the derivative is L(g(t)) = sY (s)

¢ The z-transform of its approximation is

2 (Gulo ) = 2 (M=) S 122y

Im z

Im s

Re z

Al st How would integral approximation look like here?



Forward difference method

e Approximate the derivative by using the difference between the next and the
current sample divided by the sampling period, i.e.,

d y([k + 1]Ts) o y(kTs) _ y[k + 1] B y[k]

—y(t)]— ~ Causality?
7Y () le=kr, T, T y

e The Laplace-transform of the derivative is L(g(t)) = sY (s)

¢ The z-transform of its approximation is

2 (GOl ) =2 (M) = 2y

Im s Im z

Y (2) = Y(8)], = / \
Re s ‘ \/1 Re z

Al st How would integral approximation look like here?



Time-domain integrals Why do we want to
compute an integral in

. . . . a practical controller?
¢ | et’s consider the forward-difference approximation P

iy(t)| - y(E+1]Ts) — y(RTs) _ ylk +1] — y[k]
dg” R T, T,
e Solving for y[k+1] gives (incremental form)
ylk + 1] = ylk| + Ty k] Note: this is the integral
of d/dt .
(k+1)T,
* This is Euler approximation of / y(t)dt
kT,
e Can also be written as a sum
T T/Ts,—1
JRCEED T
1=0
e Similarly, for y T T)T,-1 o .
/0 y(t)dt ~ Z yli] This is the integral of .
1=0

¢ Incremental Euler approximation is commonly used in controller
iImplementations, storing current value of the integral for the next iteration.

Al st How about backward difference approximation?



Time-domain integrals

¢ | et’s consider the backward-difference approximation

DO lmiy. ~ YFT) (k= UTs) _ ylk = ylk — 1]
dty t=kT, ~ Ts — TS
e Solving for y[k+1] gives (incremental form)
ylk + 1] = ylk] + T,y(k + 1] Compare to fwd:

ylk + 1] ~ ylk| + Tsy K]
e Called backward (or implicit) Euler approximation

e Can also be written as a sum
T/T,

/0 o(Odt~ Y gl

e Computing backward/implicit Euler integral requires iterative solution of each
time step (e.g. Newton method), because of the reliance on the future (k+1)
value of the derivative.

Al et How about higher-order differential equations?



Approximation of differential egns by difference eqgns

e Calculate the derivative by using the difference between vt

the current and the previous sample divided by the
sampling period, I.e.,

d y(kTs) —y([k —1)Ts) _ ylk] —ylk — 1]

Ey(t) |t=kT3 ~ TS TS Ts(k-:1)'i|'sk t

e The second derivative is therefore

2 d _ 4
%y(t”t:kﬂ = % %y(t)”t:kTS ~ QI Igity(t”t:("’—l)TS
ik~ ylk — 1)/T, — ok — 1] — ylk — 2)/T>
T
1

T (ylk] — 2ylk — 1] + y[k — 2])

® [n general...

Ol ~ 2 S () ulk i

1=0



Impulse-invariance method

® The impulse response is given by

e From g(t), via discretization, we get g(kTs), where T is the sampling period

g[k] — g(kTs)

e From g(kTs), using z-transform, we derive G(z) in z-domain, i.e.,

G(z) = Z (L7 (G(5))y—kr.)

¢ Using this method, frequency and step responses are not preserved
* The discrete system will be stable if the original analog system is stable
Proof on next two slides
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Impulse-invariant method: LTI systems

® The impulse response of an LTI system can be written as follows:

dy ds dn, }

h(t)zﬁ_l{H(S)}zﬁ_l{s—Al LTSS VL

= dieMt +dye?t + ...+ d, et

e Fach element’s time response contains every mode of the system (although
some coefficients may be negligible)

o After sampling: hlk] = d1e M *" + dye??* | 4 d, e FP

¢ Taking z-transforms

— i hlk]z=F = i (Z ndmekmkh> z "

oo

_ dm )\ h—l
n dm
:Z 1 — edmhy—1

m=1

Al S, Skipped on lecture



Impulse-invariant method: LTI systems

e System H(z) has n poles:

D; = e)\z-h _ e(—dz‘-sz‘)h _ e—aihejwih — |pz| _ e—aih ejw,,;h _ e—aq;h <1

e Hence, the z-transform always projects a stable pole in the s-domain to a
stable pole in the z-domain — the discrete system will be stable if the original
analog system is stable

A Seolortictcs Skipped on lecture



Recap: Step-invariance method

¢ The step response is given by

Gstop (t) = L7 (G(S))

S

® The corresponding step response in discrete time is given by
Gstep [k] — gstep(kTs)

* The z-transform of g.,[k] s given by

z
z—1

Z (gsteplkl) = G(z)

* The final transformation is thus given by

G(z) = — Lz (c—l (Gf))t:nT )

* Neither the frequency nor the impulse responses are preserved




Bilinear or Tustin method

e Using this method, the conversion of G(s) in z-domain is

Y()=Y(s)|._2 21

S=m7. ZF1

¢ Represents one of the most popular methods because the stability of the
analog system is preserved

e This transformation has a unigue mapping between the s-domain and the
z-domain, as shown below:

Im s Im z

I
. — (.

A st Corresponds to trapezoid integration



Bilinear or Tustin method: Frequency response

* What is the relationship between H (j(2) and H(Ee?)?

Recall that H.(jQ) = H(s)|_,, and H(e”) = H(2)|__,... Substituting these into the bilinear
transform formula, we get:

2 edw — 1
- T, elv +1
2 ejw/2_e_jw/2

i0

- T.s ejw/Z + e—jw/Q
2] % (ejw/Z . 6—jw/2)

T L (e3w/2 4 emiw/?)

o (times 7)

— 2222:;3; = (= %tan(w/Q)




Bilinear or Tustin method: Frequency response

Q

= =

= S /
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Il ] \
&' o \
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Engineering

Q)

— — — — — —

® The good news is that we don’t
have to worry about aliasing.

e The “bad” news is that we have to
account for frequency warping
when we start from a discrete-time
filter specification.



Remark: direct design based on specifications

e A rational z-transform can be written as

_ )z —p2)... (2~ pum)
B = o) —p2) - (2 — pw)

* To compute the frequency response of H(e’*), we compute H(z) at z = /%

e But z = ¢’“ represents a point on the circle’s perimeter
Im(z)

elet A; = |ej“’—pz-| and B; = [e/¥ — p; :
: — Jw _ Jw __ p1
|H(e]w)| |C| | M1 | |e H2| |€. ,LLM|, N Z M Al
7% — p1| €79 — pal...|e7“ — pn]| B2 i
_ | B1Bz- By T —f o
Ardy .. Ay ,7/ s
LH(E) = L(7Y — 1) + Z£(e7% — o) 4+ ...+ Z(7¥ — upr)— P
— Z(e7 —p1) — ZL(&7Y —po) — ... — Z(e?¥ — pN)



Example Im 2

Jw

1
* Consider the low-pass filter H(z) = . fe z

z—04 04 N

=k
oo
I ‘
|

s’ :

&
o

num = 1;
den=[1 -0.4];

H = tf(hum,den,0.1);

bode(H)
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% numerator

% denominator

% discrete-time transfer function with sampling time 0.1s
% plots the bode plot



Learning outcomes

By the end of this lecture, you should be able to:

e Understand what happens to the signal when sampling
e \What is the sampling frequency so that one can reconstruct the signal
e Consider the options of discretization in control systems

e Use discretization methods for designing discrete-time systems



