
HW2, PP2

We assume a steady state condition, and the convection from the tip may be neglected. Hence, we use adiabatic tip condition. We use the equations in the table:

TABLE 3.4 Temperature distribution and heat loss for fins of uniform cross section

Case	Tip Condition $(x = L)$	Temperature Distribution θ/θ_b $\frac{\cosh m(L-x) + (h/mk) \sinh m(L-x)}{\cosh mL + (h/mk) \sinh mL}$ (3.70)		Fin Heat Transfer Rate q_f $M \frac{\sinh mL + (h/mk) \cosh mL}{\cosh mL + (h/mk) \sinh mL}$ (3.72)		
A	Convection heat transfer: $h\theta(L) = -kd\theta/dx _{x=L}$					
В	$A diabatic d\theta/dx _{x=L} = 0$	$\frac{\cosh m(L-x)}{\cosh mL}$	(3.75)	M tanh mL		Here P is the perimeter of the fir i.e. $P = 2w + 2t$
С	Prescribed temperature: $\theta(L) = \theta_L$	$\frac{(\theta_L/\theta_b)\sinh mx + \sinh m(L-x)}{\sinh mL}$		$M\frac{(\cosh mL - \theta_L/\theta_b)}{\sinh mL}$		i.e. $P = 2w + 2t$
D	Infinite fin $(L \to \infty)$: $\theta(L) = 0$	e^{-mx}	(3.77) (3.79)	M	(3.78) (3.80)	

The base temperature can be calculated from the heat balance. The heat balance for this system is:

$$q = Nq_f + hA_{gaps}(T_b - T_{inf}) = 24 W$$

The fin efficiency means how much heat is transferred by the fin compared to a situation where the fin would be at the base temperature everywhere, i.e

$$\mathit{eff} = q_{\mathit{f}} / (\mathit{hA}_{\mathit{f}}(T_{\mathit{b}} - T_{\mathit{inf}}))$$

The fin effectiveness means how much heat is transferred by the fin compared to a situation where there are no extended surfaces, i.e.

$$e = q_f / (hA_{base}(T_b - T_{inf}))$$

The tip temperature is calculated using the equations in the provided table