HW5, PP1

A wood burning stove is in a corner of a room. The heat transfer surface area is rectangular, where the height is H and width is w (given in the assignment)

First, we calculate Rayleigh number to determine which Nusselt number correlation to use
$R a=g \beta\left(T_{s}-T_{\text {inf }}\right) H^{3} / v \alpha$

For ideal gas $\quad \beta=1 / T \quad$ Important! T is here in Kelvins!

When you have calculated the Nusselt number, the heat transfer coefficient is calculated from the definition of the Nusselt number
$N u=h H / k$
Here the characteristic length is the height of the stove, H. And further, the rate of heat transfer is
$q=h A\left(T_{s}-T_{\text {inf }}\right)$
(b) The radiation heat transfer is calculated as

$$
q=\epsilon \sigma A\left(T_{s}^{4}-T_{i n f}^{4}\right)
$$

In radiation it is important to use Kelvins and not Celsius!

The total heat transfer is $\quad q_{\text {tot }}=q_{\text {conv }}+q_{\text {rad }}$

Correct answers:
(a): ~750W
(b): $\sim 1100 \mathrm{~W}$

