Exercise 7

#1 Incomplete information

Consider an expert evaluating three different cars using three attributes (top speed, CO_2 emissions, and maintenance costs). The normalized attribute-specific values of the three cars are shown in the table below.

	Top speed (km/h)	CO ₂ emissions (g/km)	Maintenance costs (€/year)
x1	0	0.5	0.6
x2	0.3	0.4	0.5
x3	1	0.5	0.5

The expert states that changing CO_2 emissions from 250g/km (worst level) to 0g/km (best level) is more valuable than a change in maintenance costs from $1000 \in$ to $0 \in$ (worst to best), which is more valuable than changing top speed from 192km/h to 220km/h (worst to best).

- a) Formulate the linear inequalities that result from the above preference statements.
- b) Formulate the set of feasible attribute weights *S* that are consistent with the expert's preferences. What are the extreme points of *S*?
- c) Compute overall value intervals for the alternatives.
- d) Establish dominance relations.

#2 Sensitivity analysis

Consider three alternatives A=(100,100), B=(90,105) and C=(105,80). The DM's preferences are captured by value function $V(x)=x_1 + x_2$.

- a) Which one of the alternatives has the highest value?
- b) Suppose $x^P \in X$ is the alternative that maximizes V(x) with the given attribute weights w^* that are consistent with the DM's preference statements. Following methods proposed in the scientific literature, the DM conducts sensitivity analysis based on the idea that the *closest competitor* of x^P is the alternative $x^{CC} \in X \setminus \{x^P\}$ which, loosely speaking, (i) does not maximize the overall value with w^* , but (ii) requires the "smallest" change in weights to become the value-maximizing alternative. That is, more formally,

$$x^{CC} = \arg \min_{x \in X \setminus \{x^P\}} \left\{ \min_{w \in S^0_w} (\|w - w^*\|_2 \mid V(x^P) = V(x)) \right\}.$$

Towards this end, the DM normalizes the value function such that $V^{N}(0,0)=0$ and $V^{N}(105,105)=1$. Which alternative is the closest competitor?

c) The value functions are unique up to positive affine transformations. The DM chooses to normalize the value function such that $V^{N}(0,0)=0$ and $V^{N}(1050,105)=1$. Which alternative is the closest competitor?