
ELEC-E8125 Reinforcement Learning
Interleaved learning and planning in
model-based RL

Joni Pajarinen

1.11.2022

Learning goals

• Understand how learning and planning are used
together in model-based reinforcement learning

Anatomy of reinforcement learning
Model-based

Adopted from Sergey Levin.

Fit a model to
estimate return

Update
policy

Run policy to
generate samples

Estimate (policy gradient)
Fit (Q-learning, actor-critic)
Estimate (model-based)

∇θ R

p(st+1∣st , at)

 (policy gradient)
 (Q-learning)
Optimize (model-based)

θ←θ+α∇ θ R(θ)

πθ(a∣s)

Qϕ (s , a)

argmax uQϕ(s , a)

Motivation (partial recap)

• Reinforcement learning has limited sample efficiency

• Learned policies are task(reward-function)-specific,
learned policies cannot be directly reused

• Learned dynamics model is reusable and can be used to
reason about potential futures

• Sometimes we know the model, e.g. in games!

How to specify the model? Are there other situations
where we know the model?

Model definition and types

• Dynamics model or

• Reward model or

• Models are usually learned
– Parametric regression (e.g. neural net) common

• May be also known (e.g. games, simulators)
– Even physics based models need to be often calibrated

• Also other possibilities (active research area)
– Latent variable models, graph neural networks, non-parametric

regression models such as Gaussian processes, ...

s t+1= f (st ,a t)

r t=r (st , at)

f (st+1∣st ,a t)

r (r t∣s t ,at)

Which model to use?

Gaussian process (GP)

• Data-efficient

• Slow with big datasets

• May be too smooth for
non-smooth dynamics

Neural networks (NNs)

• Expressive

• Unpredictable with
sparse data (overfit)

– NN ensembles
estimate uncertainty

Linear models

• May be used locally

• Do not overfit

Domain specific parametric models (e.g. physics parameters) can also be used.
→ Traditional control engineering approach of model identification + control.

Spectrum of model-based RL

Time of planning

On-line (every time step)
● Act on current state
● Act without learning
● Better in unfamiliar situations

Off-line (use single /
multiple episodes)
● Fast online computation
● Predictable within

familiar situations

learn to act in
any situation
(learn policy)

how to act in
current situation
(choose action)

Spectrum of model-based RL

Time of planning

On-line Off-line

Discrete
actions
● MCTS
● ...

Continuous
actions
● iLQR
● CEM
● ...

Assist
learning
● Policy backprop
● ...

Simulate
environment
● DYNA
● Latent

dynamics
● ...

Spectrum of model-based RL

Time of planning

On-line Off-line

Discrete
actions
● MCTS
● ...

Continuous
actions
● iLQR
● CEM
● ...

Assist
learning
● Policy backprop
● ...

We kind of saw this already
last week.

Simulate
environment
● DYNA
● Latent

dynamics
● ...

Continuous on-line planning: iLQR +
learned model

Input: base policy
Run base policy to collect data
Repeat
 Fit dynamics model to minimize
 Use model to plan (e.g. iLQR, CEM) actions
 Execute first planned action, observe resulting state
 Update dataset

π0

s '

D←{(s ,a , s ')i }

f (s ,a) ∑i
‖ f (si ,a i)−si '‖

2

D←D∪{(s , a , s ')}

Continuous on-line planning: iLQR +
learned model

Input: base policy
Run base policy to collect data
Repeat
 Fit dynamics model to minimize
 Use model to plan (e.g. iLQR, CEM) actions
 Execute first planned action, observe resulting state
 Update dataset

π0

s '

● Sample efficient
● Computationally expensive for two reasons

● Dynamics fitting costly → model may be fitted only periodically (every n steps)
● Planning costly for long horizons

● Robust to moderate model errors
● Choice of regression model is an important design parameter

This is model-predictive control (MPC) with learned dynamics.
MPC horizon length is limited, can we do something?

D←{(s ,a , s ')i }

f (s , a) ∑i
‖f (s i ,a i)−s i '‖

2

D←D∪{(s , a , s ')}

Continuous on-line planning: iLQR +
learned model

Input: base policy
Run base policy to collect data
Repeat
 Fit dynamics model to minimize
 Use model to plan (e.g. iLQR, CEM) actions
 Execute first planned action, observe resulting state
 Update dataset

π0

s '

● Sample efficient.
● Computationally expensive for two reasons

● Dynamics fitting costly → model may be fitted only periodically (every n steps)
● Planning costly for long horizons

● Robust to moderate model errors
● Choice of regression model is an important design parameter

This is model-predictive control (MPC) with learned dynamics.
MPC horizon length is limited, can we do something?

D←{(s ,a , s ')i }

f (s , a) ∑i
‖f (s i ,a i)−s i '‖

2

D←D∪{(s , a , s ')}

Spectrum of model-based RL

Time of planning

On-line Off-line

Discrete
actions
● MCTS
● ...

Continuous
actions
● iLQR
● CEM
● ...

Simulate
environment
● DYNA
● Latent

dynamics
● ...

Assist
learning
● Policy backprop
● ...

Combining parametric policy with
learned dynamics by backpropagation

r ta t

s t

θ

r t−1a t−1

s t−1

∂ r t
∂θ

=
∂ rt
∂ a t

∂ a t
∂θ

+
∂ r t
∂ st

∂ s t
∂ θ

∂ s t
∂θ

=
∂ st

∂ s t−1

∂ st−1

∂θ
+

∂ st
∂ a t−1

∂ at−1

∂ θ

Backprop ~ chain rule of partial derivatives

dynamicsrewardpolicy

∇ θπ(st)
∇s r (s t , a t)

∇a r (s t , a t) ∇s f (s t−1 , a t−1)

∇a f (st−1 , a t−1)

Combining parametric policy with
learned dynamics by backpropagation

Run base policy to collect data
Repeat
 Fit dynamics model to minimize
 Calculate policy gradient update by backpropagating through dynamics
 Execute updated policy (1 or more steps), collect data
 Update dataset

D←{(s ,a , s ')i }

f ϕ(s ,a) ∑i
‖f ϕ(s i , ai)−s i '‖

2

D←D∪{(s , a , s ')}

r t

θ

r t−1

Backprop ~ chain rule of partial derivatives

a t

st

a t−1

st−1

∂ r t
∂θ

=
∂ rt
∂ a t

∂ a t
∂θ

+
∂ r t
∂ st

∂ s t
∂ θ

∂ s t
∂θ

=
∂ st

∂ s t−1

∂ st−1

∂θ
+

∂ st
∂ a t−1

∂ at−1

∂ θ

Tools handle this automatically
by automatic differentiation.

Continuous on-line planning: iLQR +
learned model

Input: base policy
Run base policy to collect data
Repeat
 Fit dynamics model to minimize
 Use model to plan (e.g. iLQR, CEM) actions
 Execute first planned action, observe resulting state
 Update dataset

π0

s '

● Sample efficient
● Computationally expensive for two reasons

● Dynamics fitting costly → model may be fitted only periodically (every n steps)
● Planning costly for long horizons

● Robust to moderate model errors
● Choice of regression model is an important design parameter

D←{(s ,a , s ')i }

f (s , a) ∑i
‖f (s i ,a i)−s i '‖

2

D←D∪{(s , a , s ')}

Example
PILCO (Deisenroth&Rasmussen, 2011)
• Dynamics learning: Use Gaussian process

models to include model uncertainty. Known
quadratic reward

• Simulation: Simulate trajectory with learned
model, including uncertainty

• Policy: Radial basis function
• Policy update: Calculate analytically policy

gradient using learned dynamics and
optimize with quasi-Newton optimizer
(BFGS)

• GP → Very sample efficient. Cannot handle
a large dataset

Reward function can also be learned
using GP, e.g. BlackDROPS (2017).

Spectrum of model-based RL

Time of planning

On-line Off-line

Discrete
actions
● MCTS
● ...

Continuous
actions
● iLQR
● CEM
● ...

Simulate
environment
● DYNA
● Latent

dynamics
● ...

Assist
learning
● Policy backprop
● ...

Simulate environment to generate
additional data: DYNA

Simulate environment to generate
additional data: latent dynamics motivation
• Dynamics

• Reward model

• Do we need to find an exact dynamics model that is
valid for every possible state and action?

• What about learning only a model that allows us to
perform the task?

• Some states may share identical optimal policies.
Can we take advantage of this somehow?

f (s t+1∣s t ,at)

r (r t∣s t ,at)

Simulate environment to generate
additional data: latent dynamics
• Real dynamics

• Real reward model

• Latent state
• Latent dynamics model and
• Latent reward model

• Policy

• Value function

f (qt |qt−1 ,at−1 ,ot−1)

r (r t∣qt)

π(at∣qt)

v(qt)

f (qt |qt−1 ,at−1)

qt

f (st+1∣st ,a t)

r (r t∣s t ,at)

Model from Dreamer [Hafner et al., ICLR 2019]

Observation of the state

Dreamer: learn latent dynamics

Picture adapted from Dream to Control: Learning Behaviors
by Latent Imagination [Hafner et al., ICLR 2019]

qt
qt +1 qt +2

f (qt |qt−1 ,at−1 ,ot−1)

r (r t∣qt)
f (qt |qt−1 ,at−1)

• For real world data
tuples
update latent state
using

• and to match real world
data update latent
models:

(ot ,at , rt)

f (qt |qt−1 ,at−1 ,ot−1)

Dreamer: learn behavior by policy
backprop

Picture adapted from Dream to Control: Learning Behaviors
by Latent Imagination [Hafner et al., ICLR 2019]

q t q t +1 q t+2
π(at∣qt)

v (qt)

• Simulate dynamics using

• Estimate value and rewards
• Update policy

to maximize value

using policy backprop through
dynamics (discussed on slide 14)

f (qt |qt−1 ,at−1)

Dreamer: act in the real world

Picture adapted from Dream to Control: Learning Behaviors
by Latent Imagination [Hafner et al., ICLR 2019]

qt q t +1 qt +2

π(at∣qt)

• To collect real world data
sample actions from
policy

and update latent state
using f (qt |qt−1 ,at−1 ,ot−1)

Spectrum of model-based RL

Time of planning

On-line Off-line

Discrete
actions
● MCTS
● ...

Continuous
actions
● iLQR
● CEM
● ...

Assist
learning
● Policy backprop
● ...

The ideas can also be combined!

Simulate
environment
● DYNA
● Latent

dynamics
● ...

Summary

• Model-based RL requires typically less data than value-
based or policy gradient approaches

• Sometimes learned dynamics can be transferred across
tasks

• Potentially suboptimal: policy optimization with
approximate models may lead to suboptimal solutions
and approximate methods to local minima

• Sometimes models are harder to learn than policy
• Often explicit choices required (e.g. time horizon)

Next: exploration / exploitation

• Next week: how to choose actions to find optimal policy?
– Choose always the best action?
– But we do not know the best action before we try actions out!
– How to balance exploration (trying out) with exploitation

(choosing what seems the best at the moment)?
– Monte Carlo tree search (MCTS): balancing exploration vs.

exploitation in model-based planning

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

