
ELEC-E8740

Basics of Sensor Fusion

Project Guide

Tracking of an Autonomous Robot

Contact person: Fatemeh Yaghoobi

Department of Electrical Engineering and Automation
Aalto University, Finland

October 2022

Contents

1 Introduction 3

2 Collecting data 4
2.1 Template codes . 4
2.2 Connecting to the robot . 4
2.3 Modules . 5

2.3.1 IMU . 6
2.3.2 Camera module . 6
2.3.3 Motor control . 6
2.3.4 Line sensor . 6
2.3.5 Data and experiment checklist . 7

3 Part I: Sensor modeling 8
3.1 Sensor-model . 8

3.1.1 Inertial measurement unit . 8
3.1.2 Static IMU experiment . 8
3.1.3 IMU calibration (accelerometer calibration) 9
3.1.4 Camera module calibration . 10
3.1.5 Motor control . 12

1

4 Part II: Localization and tracking 12
4.1 Localization . 12
4.2 Tracking . 14
4.3 Using IMU only . 16
4.4 Tracking with both IMU and Camera . 17

5 Reporting 17

2

Figure 1: DiddyBorg robot with camera module and IR detector.

1 Introduction

The aim of this project is to develop an algorithm for tracking an autonomous robot
by using a set of sensors. The robot, a DiddyBorg rover-type robot, is programmed to
follow a black line inside a closed area surrounded by walls. The robot is equipped with
an inertial measurement unit (IMU), which is a combination of accelerometer, gyroscope,
and magnetometer. In addition to the IMU, the robot is also equipped with an infra
red detector, a motor controller, and a camera module. The IMU will measure the
acceleration as well as the angular rate of the robot from three orthogonal body axis. The
accelerometer measurements and the gyroscope measurements (angular velocity) from
IMU are combined to obtain the acceleration in the inertial frame. The velocity and the
position of the robot are then readily obtained by integration of the acceleration. However,
as time increases, the error will be accumulated, and hence the deviation from the actual
position grows. The camera system will detect several predefined rectangles, which
contain unique QR codes with known position attached in the wall. This measurements
can be used to correct the position estimate obtained by twice integration.

The sensors are connected to the main computer which is a Raspberry Pi. The
Raspberry Pi is responsible to handle all sensor measurement preprocessing and logging.
It can also be used to transfer the recorded measurements data to other means.

The project consists of two parts or 7 tasks. In the first part, tasks 1 to 4, we
develop and verify the sensor model for the IMU and camera system. This includes the
following steps:

• Derivation of the sensor model,
• Estimation of the model parameters.

In the second part of the project, tasks 5 to 7, we combine the sensor model
developed in the first part with a dynamic model and a sequential estimation algorithm
to obtain our final robot tracking system.

Important notes: As mentioned before, the project has two parts. For the first
part of the project, you will be given the pre-collected data, and you need to solve the

3

required tasks in this part individually.
Second part of the project can be done either individually or in a team of maximum

three persons. In any case, you need to choose a team via the course web-page. Further-
more, you are also provided with the chance to allocate time and take measurements
yourselves using the robot. Note that you can still choose to use the data which are
collected previously. If you choose to use available data, you will be given the access to
the data through course web-page. If you desire to come to the lab and collect your own
data, you need to book a time in the course web-page.

You also need to write two reports: one intermediate report on the first part of
the project and a final report which includes the results from both parts as well as
improvements of the first part. The final grade of the project work will be based on these
two reports. On the course homepage, you can find more information about booking lab
time for measurements, deadlines, and the grading criteria.

This project instruction is organized as follows. In Section 2, you will learn how to
connect to the robot, how to collect data from each sensor, and how to run the robot.
In Section 3, you will know how to calibrate the sensors and derive sensor models for
the IMU and camera system. Sections 4 is then concerned with estimating the model
parameters and then combining the sensor model developed in the Section 3 with a
dynamic model and a sequential estimation algorithm to obtain the final robot tracking
system. Finally, Section 5 clarifies how to report your work.

2 Collecting data

In this section we will describe how to connect to the robot platform via SSH, read data
from sensors, and run the robot. In case you come to the lab to take the measurements,
you will need to use the procedure provided in this section while completing each task. If
you use the given data, you still need to understand this part. At the end of this section,
part 2.3.5, there is a checklist which briefly guide you the purpose of each task of the
project. You also have to the data collection videos in the course web-page.

2.1 Template codes

Template codebase in Python for Part II and scripts described in this section can be
found in the following link.

https://github.com/EEA-sensors/elec-e8740-project-code-template

2.2 Connecting to the robot

To connect to the robot, you could use SSH connection either directly via terminal, or
using VNC (preferred one).

• Turn on the robot using switch located at the bottom of the robot.

4

• Find the IP address of the robot. Check the MAC address written in the upper
part of the robot. Then use an ip scanner to find the associated IP address. If you
facing a difficulty to find the IP address, you could also connect a monitor to the
robot via an HDMI port located behind the camera (unscrew top part of the robot
first). Then connect usb keyboard to robot’s USB ports. Then execute ifconfig.

• Once you found the IP address of the robot, you can connect to the robot via SSH,
with user name:pi, password: pipipipi. You can also automate this process as
below:

ssh-keygen -t rsa -b 4096

ssh-copy-id pi@your_raspberry_ip_address

• The necessary files are located in

~/Git/DiddyBorg_Sensor_Fusion

We have also prepared a set of QR-codes in ~/Git/DiddyBorg_Sensor_Fusion/QR-codes
folder. Please pull from Git at least once when you just receive the robot to make
sure that you have the unmodified version of program.

2.3 Modules

To run the module change the directory to ~/Git/DiddyBorg_Sensor_Fusion/data. All
log files will be stored in this folder. There are three files that you need to run the robot
properly:

• IMU.py

• CameraModule.py

• MotorControl.py

These files stored in ~/Git/DiddyBorg_Sensor_Fusion/DiddyBorg_python. To check
options available for each of these files, execute:

python3 ../DiddyDiddyborg_python/module_xxx.py --help

Pressing Escape button will immediately stop the python scripts, except on CameraModule.py
while not showing any video output. Ideally, you should execute IMU.py command un-
til it is ready, and then CameraModule.py. Once the camera is ready, then execute
MotorControl.py.

You can modify (and encougared!) these files to accommodate your need. Should
you need to reset the configuration to default, you can always pull from Git.

git pull

5

2.3.1 IMU

After changing the directory to ~/Git/DiddyBorg_Sensor_Fusion/data, to collect read-
ing from IMU, you can run

python3 ../Diddyborg_python/IMU.py

You can also specify the output file name using --output=some_files.csv. Default
sampling times is 0.05, and you can modify it with --sampling=0.1.

The IMU log files column are, the Timestamp in ms, linear acceleration in x,y,z axis
given in gravity unit, roll and pitch angle from accelerometer in degree, gyroscope x,y,z
in degree/s, and magnetometer field strength in x,y,z axis in Gauss unit.

2.3.2 Camera module

To collect reading from camera, you can execute the following command

python3 ../Diddyborg_python/CameraModule.py

You also specify the output file name using --output=some_files.csv. If you have
access to X-server when connecting to the robot (using VNC, for example), you can
also specify --show to show the video stream from the camera module. You can also
specify the QR-code length in cm using --qrlength=xx where the input is given in cm.
The IMU log files column are, the Timestamp in ms, QR-code number, center position
(Cx,i, Cy,i) of QR-code in pixel, width and height of QR-code in pixel, raw distance from
camera to QR-code in cm, raw attitude of the QR-code relative to the camera in degree.

2.3.3 Motor control

To run the motor

python3 ../Diddyborg_python/MotorControl.py

You can also specify the output file name using --output=some_files.csv. The IMU
log files column are, the Timestamp in ms, first and second inputs as a percentage of
pulse width modulation (PWM). The input signal is between 0-1.

2.3.4 Line sensor

Line Sensor has to be calibrated when it is tried in a different material for every first
time. To calibrate it for the black line click the calibration button once and while the
LEDs blink robot should be waved like the arrow showed in Figure 2. Make sure all five
sensors are exposed to both regions (black and white). The mode indicator lighting in
the module stands for inverse detected region power on. Make sure the mode indicator is
off for whole operation.

6

Figure 2: IR Line Detector

2.3.5 Data and experiment checklist

No. Task File location Notes

Part I

1 Static IMU experiment data/task1/ To check the static bias and
the covariance.

2 IMU calibration data/task2/ To determine the gain and the
bias of the accelerometers.

3 Camera module calibration data/task3/ To determine the focal length
and bias.

4 Motor control data/task4/ To determine the speed of the
robot.

Part II

5 Localization data/task5/ To estimate the position and
attitude of the robot.

6 Tracking with IMU data/task6/ To develop a tracking algo-
rithm.

7 Tracking with IMU and camera data/task6/ To develop a tracking algo-
rithm.

7

3 Part I: Sensor modeling

3.1 Sensor-model

The robot is equipped by IMU, IR detection, camera systems, and motor control. The
IR detection is used to detect a line pattern in the floor for tracking purposes, and it
comes with built in calibration.

3.1.1 Inertial measurement unit

In this section, we will describe the sensor model of IMU. Inside an IMU, each individual
sensor has the following linear equation; see for example [1, 2, 3].

y = Gx+ b+ r

The acceleration measurement in the body axis can be written as:y1y2
y3

 =

kx 0 0
0 ky 0
0 0 kz

−1 axay
az

+

bxby
bz

+

rxry
rz

 , (1)

where ki, bi, ri, are the gain, bias, and noise, respectively in i = {x, y, z} axis.
As the case of the accelerometers, the gyroscope also experiences the earth angular

velocity, which may be used as a reference for calibration. However, for the case of MEMS
gyroscope, the earth angular velocity is so small that it is buried in the sensor noise.

From the IMU measurement record log, we can determine the variance matrix of the
IMU measurement noise. This matrix will be used later for tracking purpose.

3.1.2 Static IMU experiment

We can measure the IMU reading of a static robot using the python script provided in
Section 2.3.1. We can obtain the bias of the gyroscope by placing the robot in a static
position for a period of time. Then, we average the gyroscope readings to obtain the bias.

Task 1a. From the measurement record log file which either is given to you or you collected
yourselves, visualize the data. Read the Section 2.3.1 in order to understand
what each column represents. What do you observe? Summarize what you have
understood and write it down in your report.

Task 1b. Determine the bias and variance of the gyroscope in the IMU sensors and write
down the result in your report.

Please note that we will calibrate the accelerometer in the next section. The calibration
of the magnetometer, which requires to use the sphere fitting method and is outside the
scope of this project.

8

3.1.3 IMU calibration (accelerometer calibration)

To calibrate the accelerometer, we can depend on the assumption that the earth gravi-
tational is fixed on a static object and we use the following simple procedure for every
robot body axis:

• Turn on the robot, and run the python script for IMU (see Section 2.3.1).
• Place the robot in a firm horizontal support.
• Use a timer to record the log reading at each body axis, For example, 30s or 60s.
• Record the acceleration reading for the robot in up position, au in that direction.
• Rotate the robot 180◦ in the selected axis, and record the acceleration reading for
the robot in up position, ad.

• Calculate the gain for the selected axis as

ki =
au − ad

2g
.

Here, g is the gravity.
• Calculate the bias bi for the selected axis By

bi =
au + ad

2
.

Task 2. Plot the data from the measurement record log file. What did you observe?
Determine the gain ki and bias bi for each body axis i = {x, y, z}. Write down the
results in your report.

Note that, the coordinate system of IMU sensor can be different than those from
camera and other sensors.

Figure 3: Illustration of the robot and camera coordinate systems given by the right
hand axis rule. Notice the camera coordinate system is parallel to the robot coordinate
system

9

Figure 4: Illustration of a pinhole projection.

3.1.4 Camera module calibration

In this section, we will use a simple method to determine the distance of the robot relative
to a specific wall. Assuming that the geometry of the confined area and the QR-code
rectangles to be detected are fixed. Using additional measurement from the IMU, we
can use the distance measurements we obtained from the camera to adjust the position
estimate using the IMU only.

To determine the distance and attitude of the QR-codes to the camera, we can use
the pinhole projection rule, which was first proposed by Brunelleschi at the early of the
fifteenth century. It is a simplified mathematical model that describes the relationship
between the coordinates of an object in a three dimensional space and its projection,
assuming that the camera aperture is so tiny and there are no lenses used to focus the
light; see Figure 4. Under this assumption, we have the following relation [4, Section
1.1.1]: [

y1
y2

]
= − f

x3

[
x1
x2

]
(2)

The image coordinate point (y1, y2) is given in pixel unit. At the sensor measurement
logs, you will receive y1 and y2 in pixel units, as well as the unique number associated to
each QR-code. We can convert these values into the position of the robot in the inertial
frame. To do this, we need to estimate the focal length of the camera in pixel unit.

• Turn on the robot and run the python script for camera module (see Section 2.3.2).
• Wait until camera module ready.
• Prepare one QR-code only for the calibration.
• Place tape measure below the robot facing perpendicular to the wall with QR-code
as close as possible until the QR-code is detected, and printed in the terminal.
Write down the actual distance of the camera lens to the wall. You do not need to
write the terminal QR code reading as they are stored in log file.

• Increase one or two cm, and hold for several seconds. Repeat this step until the
QR-code cannot be read by the robot.

10

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

0

20

40

60

80

100

120

Figure 5: Relation between distance of QR-codes from the camera and detected height.

• Using the log file reading and Equation (2), we can determine the focal length f .

To get an insight of the focal length, plot one over the height against the recorded
distance; you should get nearly linear relation; see Fig 5 . Then you can use the standard
linear least-square regression to obtain the gradient and bias. Notice that the gradient k
that you get is a multiplication of the QR-code length (cm) and the “actual” focal length
in pixel.‘

For each QR code detected, you can estimate the horizontal distance x3 and direction
ϕ from the QR-code center point to the robot using (2). Let y1, y2 represent the center
point of the QR-code, and h represents the detected height of QR-code, all given in pixels.
If the actual height of QR-code is given by h0, then we can measure the robot distance
x3 and heading ϕ using

x3 =
h0f

h
+ b,

(3)

where b is a bias and

ϕ =arctan(
y1
f
). (4)

Task 3a. There are two columns in the measurement record log file. The first represents the
measured distance (in cm) and the second column represents the height (in pixel)
measured from the terminal. You need to plot the data as described above and
determine the gradient and bias. Write down the results in your report. Note that,
you also need to consider the distance of the camera from the surface of the robot.
It is provided in readme.txt file with the data for students who use available data.

Task 3b. Determine the focal length in pixel from the Equation (3), given that the height h0
of the QR-code is 11.5 cm.

11

3.1.5 Motor control

We can determine the speed of the robot. For this, we will use the script in Section 2.3.3.
First, take a measuring tape to measure the distance and a stopwatch or timer to record
each time lapse. Then, prepare the measuring tape in the floor in any direction, for
example, 200cm. Now, place the robot at the beginning of the measuring tape. The
robot will start moving forward if we run the script MotorControl.py. Now, we can
record the time at every 40cm, for example, as the robot moves forward.

Task 4 There are two columns in the measurement record log file. The first represents
the distance (in cm) measured from the measuring tape and the second column
represents the measured time (in s). You need to determine the speed of the robot.
Write down the results in your report. Note that, you need to determine the
distance interval from the given log file.

4 Part II: Localization and tracking

In Part I of the project, we derived the sensor model. In Part II, we will develop
an estimator for the unknown model parameters, and verified that the model is indeed
useful for tracking purposes. Then, we extend these results and develop the models and
algorithm necessary for tracking the robot when moving.

4.1 Localization

Localization is the process of estimating the position of a robot with respect to its
environment. It is a fundamental process in autonomous driving vehicles and mobile
robots to localize themselves globally for further decision making. In this part, we are
interested in estimating the robot position and attitude using a camera sensor.

Now that we have both IMU and camera ready, we can use both of them to localize
the robot position. This will serve as a validation to the measurement model of the
camera derived before. Notice that although the camera axis is parallel to robot axis, the
center position of the robot differs to the camera lens position. In the robot local axis, the
camera lens position is fixed, but in global axis we will need to take account the direction
of the robot in the global coordinates. The rotation matrix for a counterclockwise rotation
of the 2× 1 vector a by an angle α around the z-axis is given by

R(α) =

[
cos(α) − sin(α)
sin(α) cos(α)

]
(5)

and thus, the rotated vector is

a′ = R(α)a. (6)

We will now place the robot with camera facing one of the walls. Make sure that the
camera is able to detect as many as QR-codes possible (See Figure 6). We may need to

12

use a smaller size QR-code if the camera does not able to detect more than one QR-code
at the same time. You can check the Section 2.3.2 on how to adjust the python script for
this case. We measure the exact global position of the robot for a reference. Also, we
measure the QR-codes position in a global coordinate.

We assume that the global position of each QR-code is (sxi , s
y
i). If the global position

and heading of the robot are (pxi , p
y
i , ψ), then for each QR-code, the measurement model

for camera can be defined as

di =
√
(sxi − pxi)

2 + (syi − pyi)
2

ϕi = arctan((syi − pyi)/(s
x
i − pxi))− ψ

(7)

If we know the exact distance di and the heading ϕi of each QR-code, then we can
estimate pxi , p

y
i , ψ. In general, these are not known. However, since we know the focal

length f of the camera, we can recover di and ϕi using Equation (3) and (4). The
reading from the camera gives the height hi and the center position (Cx,i, Cy,i) of each
QR-code in the image plane and the true height h0 of the QR-code is known i.e. 11.5cm,
we can get

di =
h0f

hi

ϕi = arctan(
Cx,i

f
)

(8)

Therefore, we have

hi =
h0f√

(sxi − pxi)
2 + (syi − pyi)

2

Cx,i = f tan (arctan((syi − pyi)/(s
x
i − pxi))− ψ) .

(9)

We can write Equation (9) in the matrix notation

y = g(x). (10)

Task 5a. Describe the relation between the QR-codes global coordinates and the robot’s
static position in your report; see Figure 8 as a reference. What is the minimum
number of different QR-codes that are needed to estimate the position and attitude
of the robot in global coordinates?

Task 5b. Next, use nonlinear (weighted) least square technique to estimate the position and
heading of the robot. To do this, you need to derive the Jacobian of measurement
model that you choose and the measurement variance matrix for the camera module.

Hints:

• Try to identify how many qr codes are detected by the camera at each time step
from the record log file.

13

Figure 6: Detected QR-codes by CameraModule script.

• For students who use available data, the global position of the qr codes are given
in qr code position in global coordinate.csv file. Also, note that, the true position
of the robot with respect to the frame/wall is given.

• You need to consider the focal length f that you found in Task 3 to correct the
distance in the measurement log file.

• The measurement model g(x) is defined in Equation (7) or Equation (9). Choose
appropriate Jacobian of measurement model. For this, check the lecture 4, slide 18
as a starting point.

• Choose an appropriate nonlinear optimization method to estimate the position
and heading of the robot with respect to the frame (i.e., the global position). See
lecture 4 and 5.

4.2 Tracking

In this part, we extend these results and develop the models and algorithm necessary for
tracking the robot when moving. The tasks are to:

• develop a dynamic model,
• adjust the sensor model,
• implement a filtering algorithm,
• validate the algorithm.

In previous section, we have tracked a static robot. In practice, we are interested
in tracking a mobile robot. Thus, we need to know the position, heading, velocity,
acceleration of the robot at time step t. There are two solutions to track a mobile robot.
First is to start from a known position and track the robot’s position locally provided

14

Figure 7: The predefined semi-elliptical tracking path.

that a dynamic model is given. This process is known as dead-reckoning. The other is to
use an external sensor that measures the robot’s position globally. In this section, we will
use either 2D wiener velocity model or quasi-constant turn model as our motion model.

In our setup, the robot is programmed to follow a black line on a white background.
We have a predefined test track shown in Figure 7, a semi-elliptical track, in a 121.5cm
x 121.5cm squared boundary area. Using IMU and camera sensors, you will build a
nonlinear filter to estimate the robot’s global position and heading.

A quasi-constant turn model can be expressed as follows:

ṗx(t) = v(t) cos(φ(t)),

ṗy(t) = v(t) sin(φ(t)),

v̇(t) = w1(t),

φ̇(t) = w2(t),

(11)

where

• state x(t) =
[
px(t) py(t) v(t) φ(t)

]⊤
,

• Position measurement: px(t) and py(t),
• Speed measurement (odometry): v(t), and
• Magnetometer measurement(compass): φ(t).

The gyroscope measures v̇(t) and the acceleratometer measures φ̇(t). Hence, we can
rewrite v̇(t) = aacc(t) + w1(t) and φ̇(t) = ωgyro(t) + w2(t). In general, the accelerometer

15

Figure 8: Illustration of the global coordinate system, QR-codes with known positions in
global coordinate, and the robot local acceleration. When the robot camera heads to the
y axis, the global angle of the robot equal to zero.

measurements are not accurate enough. We can get the speed v(t) directly from wheels,
for example. Thus, we can have a reduced quasi-constant turn model as

ṗx(t) = v(t) cos(φ(t)),

ṗy(t) = v(t) sin(φ(t)),

φ̇(t) = ωgyro(t) + w(t).

(12)

4.3 Using IMU only

In this section, we will use gyroscope and motor controller to estimate the position and
heading of the robot. The robot’s position and heading can be determined from the
wheel rotation measurements. Our robot is a six-wheeled robot. We have configured
our MotorControl.py script that allows the same amount of input voltage to each wheel
on each side. Therefore, the speed of the robot will be a function of the pulse width
modulation (PWM) input given to each side. In the calibration, we use 30% PWM. This
determines the linear gain between PWM input to the actual robot speed in straight
movement. From the log file, we can get the PWM inputs of both sides of the robot.
Then, we can estimate the current velocity of the robot.

Task 6a. Choose a dynamic model to model the motion of the robot. The robot moves in
two dimensions and hence, a two dimensional model is needed. Once you have
chosen a suitable motion model, discretize it using an appropriate discretization
method. The inputs to the motor in terms of pulse width modulation are recorded

16

which gives the velocity and the gyroscope gives the turning rate. You should use
these inputs in your dynamic model.

Task 6b. Do dead-reckoning (i.e., prediction) based on speed measurements from motor
control and turn rate measurements from gyroscope.

Task 6c. Compare your dead-reckoning result with the predefined track in Figure 7.

Hints:

• Use the quasi-constant turn model as your dynamic model. Also make sure that
the sign of the gyroscope measurement is correct and that its units are converted
to radians.

• We will use the gyroscope to measure the heading.
• You can consider the velocity to be the average of input pulse applied to each wheel.
If you are interested to build up more complicated model, you can consider the
diameter and width of the wheels as well as the distance between right and left
wheels. The diameter and width of each wheel are 65mm and 25mm, respectively.
The difference between the left and right wheels is 180mm.

4.4 Tracking with both IMU and Camera

The IMU sensors alone may not be sufficient to perform localization accurately. Therefore,
we need to incorporate camera measurements into the filtering algorithm. The camera
sensor detects the landmarks (QR-codes). Each QR-code is in a known position on the
global coordinate which is given in qr code position in global coordinate.csv file. This
information will be used in the filtering algorithm. Thus, we can estimate the global
position of the mobile robot. Notice that at each time-stamp, there could be more than
one QR-code detected. Furthermore, timestamp from camera log files might differ totally
with the timestamp you get from IMU.

Task 7. Discretize the dynamic model and implement a nonlinear filter (e.g., EKF or particle
filter) to estimate the robot position and heading in global coordinates.

Hint:

• The model and filtering algorithms may be quite sensitive to the tuning parameters
(spectral density of the process noise and measurement noise). For the process noise,
think about what it actually represents physically and relate it to the robots motion.
For the measurement noise, you may estimate it based on the model parameter
estimation data and possibly add some margin to account for modeling errors.

5 Reporting

To report the technical results of a project is an important skill. Reporting should be done
using concise and accurate language, including enough detail such that someone with the
same education and background can understand, interpret, and reproduce your work.

17

Your derivations, results, and interpretations should be backed up by data, illustrations,
and so forth. Furthermore, also make sure that you answer and discuss the questions
raised in this guide.

Your project report should include at least the following1:

• An abstract that briefly summarizes what you have done and what the results are,
• a brief introduction to the project and the problem that you are solving,
• derivation of the model,
• calibration procedures that are used (if any).
• description of the estimation method(s) used for parameter estimation, validation,
and tracking,

• the results,
• conclusions and/or a summary,
• references (if applicable).

Note that, for Part I report, not all of the above items might apply yet, however, you
need to at least report the following items:

• Your student number and the number of the dataset you used,
• A brief description of the robot and sensor models,
• Explanatory data analysis of the log files,
• Plans to implement localization and tracking algorithms.

For both parts (Part I and Part II), your submission should consist of a PDF report
and the code(s) (Python/MATLAB) with solutions used for the tasks.

1You are free to use whatever structure you prefer, as long as it is consistent and logical.

18

References

[1] U. Qureshi and F. Golnaraghi, “An algorithm for the in-field calibration of a MEMS
IMU,” IEEE Sensors Journal, vol. 17, no. 22, pp. 7479–7486, nov 2017.

[2] P. Patonis, P. Patias, I. N. Tziavos, D. Rossikopoulos, and K. G. Margaritis, “A fusion
method for combining low-cost IMU/magnetometer outputs for use in applications
on mobile devices,” Sensors, vol. 18, no. 8, p. 2616, aug 2018.

[3] K. Papafotis and P. P. Sotiriadis, “MAG.i.c.AL. – a unified methodology for magnetic
and inertial sensors calibration and alignment,” IEEE Sensors Journal, pp. 1–1, 2019.

[4] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, 2nd ed. Pearson,
2011.

19

	Introduction
	Collecting data
	Template codes
	Connecting to the robot
	Modules
	IMU
	Camera module
	Motor control
	Line sensor
	Data and experiment checklist

	Part I: Sensor modeling
	Sensor-model
	Inertial measurement unit
	Static IMU experiment
	IMU calibration (accelerometer calibration)
	Camera module calibration
	Motor control

	Part II: Localization and tracking
	Localization
	Tracking
	Using IMU only
	Tracking with both IMU and Camera

	Reporting

