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The multiple model (MM) algorithms;  Hybrid systems  — the system behaves according 
to one of a finite number of models, it is in one of several modes (operating regimes),  
both discrete (structure/parameters) and continuous uncertainties 

1. The static MM algorithm —for fixed (nonswitching) models   

2. The optimal dynamic MM algorithm — for switching models —Markov chain, two 
suboptimal approaches: Generalized pseudo-Bayesian (GPB) ; Interacting multiple 
model (IMM)

Adaptive estimation algorithms — in many practical situations the “parameters of the 
problem” are partially unknown and possibly time-varying. The state estimation 
techniques that can “adapt” themselves to certain types of uncertainties

MULTIPLE MODELS AND ADAPTIVE 

ESTIMATION  
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THE MULTIPLE MODEL APPROACH

In the multiple model (MM) approach the system obeys one of a finite 
number of models. Such systems are called hybrid: both continuous 
(noise) uncertainties and discrete uncertainties — model or mode, or 
operating regime uncertainties.

A Bayesian framework : Starting with prior probabilities of each

model being correct (i.e., the system is in a particular mode), the 
corresponding posterior probabilities are calculated.

First the static case in which the model the system obeys is fixed, that is, 
no switching from one mode to another occurs during the estimation 
process (timeinvariant mode) is considered. This will result in the static 
MM estimator.

While the model that is in effect stays fixed, each model has its own 
dynamics, so the overall estimator is dynamic



Notation 

The model is one of r possible models (the system is in one of r 

modes).

The prior probability that Mj is correct, the system is in mode j

the correct model is among the assumed r possible models.

It will be assumed that all models are linear-Gaussian.

Subsequently, the dynamic situation of switching models or mode 

jumping is considered: the system undergoes transitions from one

mode to another;  the dynamic MM estimator.
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The Static Multiple Model Estimator

For fixed models. Using Bayes’ formula, the posterior probability of 
model j being correct, given the measurement data up to k, is given by 
the recursion 

the likelihood function of mode j at time k, which, under the linear-
Gaussian assumptions
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where νj and Sj are the innovation and its covariance from the mode-
matched filter corresponding to mode j

Thus a Kalman filter matched to each mode is set up yielding mode 
conditioned state estimates and the associated mode-
conditioned covariances.

The probability of each mode being correct — the mode estimates

— is obtained  based on its likelihood function relative to the other 
filters’ likelihood functions. 

In a nonlinear situation the filters are EKF instead of KF

The output of each mode-matched filter is the mode-conditioned 
state  estimate             , the associated covariance Pj and the 
mode likelihood function Λj .

After the filters are initialized, they run recursively on their own 
estimates. Their likelihood functions are used to update the mode 
probabilities. 

The latest mode probabilities are used to combine the mode-
conditioned estimates and covariances.
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The static multiple model estimator for r = 2 fixed models, a bank of 
filters
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Under the above assumptions the pdf of the state of the system is a 
Gaussian mixture with r terms

The combination of the mode-conditioned estimates

the covariance of the combined estimate is

the last term above is the spread of the means term.
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The above is exact under the following assumptions:

1. The correct model is among the set of models considered,

2. The same model has been in effect from the initial time.

Assumption 2 is obviously not true if a maneuver has started at some 
time within the interval [1, k], in which case a model change —
mode jump — occurred.

If the mode set includes the correct one and no mode jump occurs, 
then the probability of the true mode will converge to unity, that 
is, this approach yields consistent estimates of the system 
parameters. Otherwise the probability of the model “nearest” to the 
correct one will converge to unity.

A shortcoming of the static MM estimator when used (wrongly) with 
switching models is that, in spite of the above ad hoc modification, 
the mismatched filters’ errors can grow to unacceptable levels. 
Thus, reinitialization of the filters that are mismatched is, in general, 
needed
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The Dynamic Multiple Model Estimator

In this case the mode the system is in can undergo switching in time. 
The system is modeled by the equations

where M(k) denotes the mode or model “at time k” — in effect during the

sampling period ending at k. Such systems are also called jump-linear 
systems. The mode jump process is assumed left-continuous.

The mode at time k is assumed to be among the possible r modes

The continuous-valued vector x(k) and the discrete variable M(k) are 
sometimes referred to as the base state and the modal state



the structure of the system and/or the statistics of the noises might be

different from model to model. The mean uj of the noise can model a 

maneuver as a deterministic input.

The lth mode history — or sequence of models — through time k is

denoted as

where iκ,l is the model index at time κ from history l and

Note that the number of histories increases exponentially with time
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For example, with r = 2 one has at time k = 2 the 
following rk = 4 possible sequences (histories)

It will be assumed that the mode (model) switching —
that is, the mode jump process — is a Markov 
process (Markov chain) with known mode 
transition probabilities

These mode transition probabilities will be assumed 
time-invariant and independent of the base state. In 
other words, this is a homogeneous Markov chain. 

The system  is a generalized version of a hidden 
Markov model.

The event that model j is in effect at time k is denoted 
as



The conditional probability of the lth history will be evaluated next

The lth sequence of models through time k

where sequence s through k−1 is its parent sequence and Mj is its last 

element, in view of the Markov property

The conditional pdf of the state at k is obtained using the total 

probability theorem with respect to the mutually exclusive and 

exhaustive set of events, as a Gaussian mixture with an 

exponentially increasing number of terms
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Since to each mode sequence one has to match a filter, it can be 
seen that an exponentially increasing number of filters are 
needed to estimate the (base) state, which makes the optimal 
approach impractical.

The probability of a mode history is obtained using Bayes’ formula
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If the current mode depends only on the previous one (i.e., it is a 
Markov chain), then

where i = sk−1 is the last model of the parent sequence s.

The above equation shows that conditioning on the entire past 
history is needed even if the random parameters are Markov

Impossible to implement in Practice, approximations are needed



Practical Algorithms

The only way to avoid the exponentially increasing number of histories, 

which have to be accounted for, is by going to suboptimal techniques.

The generalized pseudo-Bayesian (GPB) approaches combine 

histories of models that differ in “older” models. The first-order GPB, 

denoted as GPB1, considers only the possible models in the last 

sampling period. The second-order version, GPB2, considers all the 

possible models in the last two sampling periods. These algorithms 

require r and r2 filters to operate in parallel, respectively.

Finally, the interacting multiple model (IMM) estimation algorithm will 

be presented. This algorithm is conceptually similar to GPB2, but

requires only r filters to operate in parallel.
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The Mode Transition Probabilities

The mode transition probabilities, indicated as assumed to be

known, are actually estimator design parameters to be selected in the

design process of the algorithm.

The GPB1 Multiple Model Estimator for Switching Models

In the generalized pseudo-Bayesian estimator of first order (GPB1), at time 

k the state estimate is computed under each possible current model —

a total of r possibilities (hypotheses) are considered. All histories that differ 

in “older” models are combined together.
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Thus at time k−1 there is a single lumped estimate  and

the associated covariance that summarize (approximately) the past 

Zk−1. From this, one carries out the prediction to time k and the update 

at time k under r hypotheses, 

After the update, the estimates are combined with the weightings μj(k), 

resulting in the new combined estimate             .. In other words, the r 

hypotheses are merged into a single hypothesis at the end of 

each cycle.

Finally, the mode (or model) probabilities are updated. The output 

of each model-matched filter is the mode-conditioned state estimate 

the associated covariance Pj and the mode likelihood function Λj .
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After the filters are initialized, they run recursively using the previous 

combined estimate. Their likelihood functions are used to update the 

mode probabilities. The latest mode probabilities are used to combine 

the model-conditional estimates and covariances. The structure of this 

algorithm is

where Ne is the number of estimates at the start of the cycle of the 

algorithm and Nf is the number of filters in the algorithm.
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The GPB1 MM estimator for r = 2 switching models (one cycle).
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The GPB1 MM Algorithm

1. Mode-matched filtering (j = 1, . . . , r). Starting with                 ,

one computes                      and the associated covariance Pj(k|k) 

through a filter matched to  Mj(k). The likelihood functions

corresponding to these r filters are evaluated as Λj

2. Mode probability update (j = 1, . . . , r).
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which yields with pij the known mode transition probabilities

3. State estimate and covariance combination. 
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The GPB2 Multiple Model Estimator for Switching Models

In the generalized pseudo-Bayesian estimator of second order (or

GPB2), at time k the state estimate is computed under each possible 

current and previous model — a total of r2 hypotheses (histories) are 

considered. All histories that differ only in “older” models are merged.
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that is, the past {Mi(k−1), Zk−1} is approximated by the mode-

conditioned estimate                                  and associated covariance., 

Thus at time k−1 there are r estimates and covariances, each to be 

predicted to time k and updated at time k under r hypotheses

After the update, the estimates corresponding to the same latest model 

hypothesis are combined with the weightings μi|j(k−1|k), detailed later, 

resulting in r estimates             . In other words, the r2 hypotheses are 

merged into r at the end of each estimation cycle. 
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The 

GPB2 MM 

estimator 

for r = 2 

models 

(one 

cycle).
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The structure of the GPB2 algorithm is

where Ne is the number of estimates at the start of the cycle of the 

algorithm and Nf is the number of filters in the algorithm
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The GPB2 MM Algorithm

1. Mode-matched filtering (j = 1, . . . , r). Starting with      

one computes                  and the associated covariance                 

through a filter matched to Mj(k). The likelihood functions corresponding 

to these r2 filters

2. Calculation of the merging probabilities (i, j = 1, . . . , r). The

probability that mode i was in effect at k − 1 if mode j is in effect at k is,

conditioned on Zk,
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The mode transition probabilities pij are assumed to be known —

their selection is part of the algorithm design process.
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3. Merging (j = 1, . . . , r).
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4. Mode probability updating (j = 1, . . . , r).
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5. State estimate and covariance combination

The latest state estimate and covariance for output only are
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The Interacting Multiple Model Estimator (IMM) 

At time k the state estimate is computed under each possible current model 

using r filters, with each filter using a different combination of the previous 

model-conditioned estimates — mixed initial condition.

The total probability theorem is used as follows to yield r filters running in

parallel:
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The model-conditioned posterior pdf of the state, given above,  reflects one 

cycle of the state estimation filter matched to model Mj(k) starting with the 

prior, which is the last term above. The total probability theorem is now 

applied to the prior

The second line above reflects the approximation that the past through k−1 

is summarized by r model-conditioned estimates and covariances. 
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The last  line  is a mixture with weightings, denoted as μi|j(k − 1|k − 1),

different for each current model Mj(k). This mixture is assumed to be a 

mixture of Gaussian pdfs (a Gaussian sum) and then approximated via 

moment matching by a single Gaussian :

The input to the filter matched to model j is obtained from an interaction

of the r filters, which consists of the mixing of the estimates        

with the weightings (probabilities) μi|j(k − 1|k − 1), called the mixing

probabilities



The above is equivalent to hypothesis merging at the beginning of each

estimation cycle. More specifically, the r hypotheses, instead of “fanning 

out” into r2 hypotheses (as in the GPB2), are “mixed” into a new set of r 

hypotheses. This is the key feature that yields r hypotheses with r filters, 

rather than with r2 filters as in the GPB2 algorithm.

The structure of the IMM algorithm is 

where Ne is the number of estimates at the start of the cycle of the 

algorithm and Nf is the number of filters in the algorithm.
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The IMM estimator (one cycle).
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The IMM Algorithm

1. Calculation of the mixing probabilities (i, j = 1, . . . , r). The 

probability that mode Mi was in effect at k − 1 given that Mj is in effect at k

conditioned on Zk−1 is

The above are the mixing probabilities

the normalizing constants are
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the mixing at the beginning of the cycle, rather than the standard merging

at the end of the cycle.

2. Mixing (j = 1, . . . , r). Starting with                           , one computes the

mixed initial condition for the filter matched to Mj(k)
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3. Mode-matched filtering (j = 1, . . . , r). The estimate  and 

covariance are used as input to the filter matched to Mj(k), which uses 

z(k) to yield                    and Pj(k|k).

The likelihood functions corresponding to the r filters

are computed using the mixed initial condition and the associated

covariance as
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4. Mode probability update (j = 1, . . . , r).
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5. Estimate and covariance combination. Combination of the

model-conditioned estimates and covariances is done according to the 

mixture equations

This combination is only for output purposes

One possible generalization of the IMM estimator is the “second-order 

IMM” with an extra period depth. It has been reported that this 

algorithm is identical to the GPB2
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The Multiple Model Approach — Summary
The multiple model or hybrid system approach assumes the system to be in 

one of a finite number of modes.

Each model is characterized by its parameters — the models can differ in the 

level of the process noise (its variance), a deterministic input, and/or any other 

parameter (different dimension state vectors are also possible).

For the fixed model case the estimation algorithm consists of the following:

• For each model a filter “matched” to its parameters is yielding model 

conditioned estimates and covariances.

• A mode probability calculator — a Bayesian model comparator —

updates the probability of each mode using the likelihood function 

(innovations) of each filter the prior probability of each model

• An Estimate combiner computes the overall estimate and the associated

covariance as the weighted sum of the model-conditioned estimates and 

the corresponding covariance — via the (Gaussian) mixture equations.
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The Multiple Model Approach — Summary continues

For systems that undergo changes in their mode during their operation —

mode jumping (model switching) — one can obtain the optimal multiple 

model estimator which, however, consists of an exponentially increasing 

number of filters. This is because the optimal approach requires conditioning 

on each mode history, and their number is increasing exponentially. 

Thus, suboptimal algorithms are necessary. 

The first-order generalized pseudo-Bayesian (GPB1) MM approach 

computes the state estimate accounting for each possible current model.

The second-order generalized pseudo-Bayesian (GPB2) MM approach 

computes the state estimate accounting for
• Each possible current model

• Each possible model at the previous time

The interacting multiple model (IMM) approach computes the state estimate

that accounts for each possible current model using a suitable mixing of the

previous model-conditioned estimates depending on the current model.
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USE OF EKF FOR SIMULTANEOUS STATE AND 

PARAMETER ESTIMATION

Augmentation of the State. 

Denoting the unknown parameters as a vector θ, the augmented state

will be the stacked vector consisting of the base state x and θ

The linear dynamic equation of x

and the “dynamic equation” of the parameter vector

, better is !

can be rewritten as a nonlinear dynamic equation for the augmented state
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Any nonzero variance of the process noise for the parameter will 

prevent the filter-calculated variances of the parameter estimates from 

converging to zero. Furthermore, this also gives the filter the ability to 

estimate slowly varying parameters

The choice of the variance of the artificial process noise for the 

parameters — the tuning of the filter — can be done as follows:

1. Choose the standard deviation of the process noise as a few 

percent of the (estimated/guessed) value of the parameter.

2. Simulate the system and the estimator with random initial estimates 

(for the base state as well as the parameters) and monitor the 

normalized estimation errors.

3. Adjust the noise variances until, for the problem of interest, the filter 

is consistent — it yields estimation errors commensurate with the 

calculated augmented state covariance matrix. 
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An Example of Use of the EKF for Parameter estimation

Consider the scalar system, that is, its base state x is a scalar, given by

where v1(k) is the base state process noise and the two unknown 

parameters

are a(k) and b(k), possibly time-varying.

The observations are

the augmented state is

With this the nonlinear dynamic equation
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The augmented state equation is then

with the augmented process noise

assumed zero mean and with covariance

The second-order EKF will use the following augmented state prediction

equations.

since 
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The predicted values of the remaining two components of the 

augmented state, which are the system’s unknown parameters

evaluation of the Jacobian of the vector f and the Hessians of its 

components.
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for the augmented state

The prediction covariance of the base state
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EKF for Parameter Estimation — Summary

The EKF can be used to estimate simultaneously

• the base state and

• the unknown parameters

of a system.

This is accomplished by stacking them into an augmented state and 

carrying out the series expansions of the EKF for this augmented state.

Since the EKF is a suboptimal technique, significant care has to be 

exercised to avoid filter inconsistencies. The filter has to be tuned with 

artificial process noise so that its estimation errors are commensurate 

with the calculated variances.
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