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In the previous lecture…

• What is the sampling frequency so that one can reconstruct the signal

(bandwidth)

(bandwidth)



In the previous lecture…

• Considered the options of discretization in control systems

- Relies on the use of numerical methods for solving differential equations 
describing the given system and for converting them to difference equations

✓ Backward difference method

✓ Forward difference method

✓ Approximation of derivative and integral

✓ Bilinear (or Tustin) method

- Match the response of continuous-time systems to specific inputs (e.g., impulse, 
step and ramp functions) to those of discrete-time systems for the same inputs

✓ Impulse-invariance method

✓ Step-invariance method



Today

We will talk about

• Feedback in discrete setting (recap)

• PID control in continuous time (recap)

• PID in discrete time

• Integral windup and anti-windup methods



Learning outcomes

By the end of this lecture, you should be able to:

• Design practical PID controllers for applications 

• Design anti-windup schemes to avoid wind-up



PID-Controllers 

• Proportional-Integral-Derivative (PID) control is the standard for industrial 
control with over 90% of industrial control systems using PID control 

• The ubiquitous nature of PID control stems from:

- its simple structure

- the distinct effect of each of the three PID terms

- its established use in industry

- engineers’ preference to improve existing methods before adopting new

• The first theoretical analysis and practical application was in the field of 
automatic steering systems for ships - early 1920s onwards. 

• Then, used for automatic process control in manufacturing industry, where 
it was widely implemented in pneumatic and electronic controllers.



Feedback control in a discrete setting

• Let us examine the following block diagram of control system: 

• We have

• Therefore,

What’s the output in terms of reference?



Feedback control in a discrete setting

• Solving for 

(closed-loop transfer function 
from reference/input to output)



Feedback control in a discrete setting

• The block diagram of the control system can be simplified as

• What about the error        ?



Feedback control in a discrete setting

• The block diagram of the control system can be simplified as

• Similarly, for the error 

• The problem becomes how to choose an appropriate K(z) such that

➡ H(z) will yield desired properties

➡ the resulting error function e[k] goes to zero as quick and as smooth as 
possible - equivalent to output y[k] tracking the given reference r[k]



Behavior of continuous 2nd order systems 
with unit step input

• Consider the following block diagram with a standard 2nd order system

• The behavior of the system is as follows:

The behavior of the system is fully 
characterized by:

• ζ the damping factor

•ωn the natural frequency



Time domain design specification

• Typical specifications for the step response (continuous-time domain):

• Steady-state accuracy

• Rise time (10% — 90%)

• Peak overshoot

• Settling time (1%)

or

For 2nd order systems



The mapping from the s-plane to the z-plane

• Locus of                   under the mapping 



The mapping from the s-plane to the z-plane



The mapping from the s-plane to the z-plane



Time domain design specification

• Typical specifications for the step response (discrete-time domain):

• Steady-state accuracy

• Rise time (10% — 90%)

• Peak overshoot

• Settling time (1%)

or

radius of poles:



Example

• A continuous system with transfer function

is controlled by a discrete control system with ZOH. The closed-loop 
system is required to have:

‣Step response overshoot:

‣Step response settling time (1%):

‣Steady-state error to unit ramp: 

Check these specifications if the sampling time is          and the controller is



Example
Solution:

a) We first find the pulse transfer function of G(s) with the ZOH:

(check it at home! )



Example

b) Find the controller transfer function

c) Check the steady-state error for a unit ramp. We already showed that  

where the input is:                                             . Therefore,



Example

d) Step response:

The closed loop poles are the roots of 

But the pole at                is canceled by controller’s zero and, therefore,



Example

Or by simulation!



Continuous-time PID-Controllers 

• The continuous-time PID controller (in time domain) is

• Taking Laplace transforms:

• P: amplifies the error by Kp.

• I: eliminate the residual error by adding a control effect due to the historic 
cumulative value of the error

• D: reduce the effect of the error by exerting a control based on the rate of error 
change



P-Controller

• The obvious method - proportional control

• This method fails if, for instance, the error corresponds to more than a single 
task or the system changes; hence, for the same error, different gains are 
needed.

• That's where the integral and derivative terms play their part.



I-Controller

• An integral term increases action in relation not only to the error, but also the 
time for which it has persisted. So, if applied control action is not enough to 
bring the error to zero, this control action will be increased as time passes.

• A pure "I" controller could bring the error to zero, however, it would be both 
slow reacting at the start, brutal, and slow to end, prompting overshoot and 
oscillations.

• Alternative formulation: change the error in small persistent steps - over time 
the steps accumulate and add up dependent on past errors; 
this is the discrete-time equivalent to integration.



D-Controller

• Ideal derivative control cannot (and must not) be realized in a PID-controller. 
Practical systems always contain high frequency disturbances (e.g., white 
noise), which are amplified by derivative control.

• Because of that a lag term is usually added to the derivation.

• Aims at flattening the error trajectory into a horizontal line, damping the control 
applied, and so reduces overshoot

• Other practical modification is to derivate only the output (not the reference, 
not the error signal)



PID-Controller

• Top-left: P-controller effect 
(ID-controllers kept constant)

• Bottom-left: I-controller effect
(PD-controllers kept constant)

• Bottom-right: D-controller effect
(PI-controllers kept constant)



From continuous- to discrete-time PID controllers

• Simple discretization:

• Taking the z-transform (why?):

• Therefore:



From continuous- to discrete-time PID controllers

• Note: the above PID-controller is not the only interpretation of a discrete 
PID-controller. For example, if backward integration is used in the integral 
part, the formula below follows:

• The discretization of a practical PID-controller is as straightforward:



Tuning PID controllers

• The structure of the used discrete PID algorithm must always be told together 
with the tuning parameters Kp, Ki, Kd (and h).

• Controller design is based on heuristic design methods for selecting the 
controller parameters.

• The principal design goal is stability: The system is stable when the closed 
loop poles are on the left-half of s-plane or inside the unit circle in z-plane

• Secondary criteria are, for example, rise, overshoot, settling time, and steady 
state error. These can be analyzed graphically from impulse, step and ramp 
responses of the close loop system

Parameter Rise time Overshoot Settling time
Steady-state 

error
Stability

Kp
Decrease Increase Small change Decrease Degrade

Ki
Decrease Increase Increase Eliminate Degrade

Kd
Minor change Decrease Decrease No effect in theory Improve if  small

Effects of increasing a parameter independently

Disturbances considered next week



Actuator saturation

• Most control systems are designed based on linear theory

• A linear controller is simple to implement and performance is good, as long as 
dynamics remain close to linear

• Nonlinear effects require care, such as actuator saturation (always present)

• Saturation phenomena, if neglected in the design phase, can lead to 
closed-loop instability, especially if the process is open-loop unstable. 
Main reason: the control loop gets broken if saturation is not taken into 
account by the controller



Saturation function

• Saturation can be defined as the static nonlinearity

• If u is a vector with m>1 components, the saturation function is defined as the 
saturation of all its components

• umin and umax are the minimum and maximum allowed actuation signals (for 
example, maximum current for an electric motor)



The wind-up problem

• The output takes a long time to go steady-state

• The reason is the “wind-up” of the integrator contained in the PID controller, 
which keeps integrating the tracking error even if the input is saturating

• Anti-windup schemes avoid such a wind-up effect



Anti-windup #1: Incremental algorithm

• It only applies to PID control laws implemented in incremental form

• Integration is stopped if adding a new ∆u[k] causes a violation of the 
saturation bound



Anti-windup #2: Back-calculation

• Anti-windup scheme has no effect when the actuator is not saturating, 

• The time constant     determines how quickly the integrator of the PID 
controller is reset (negative feedback to integrator)

• If the actual output u(t) of the actuator in not measurable, we can use a 
mathematical model of the actuator, e.g., et(t) = v(t) − sat(v(t))



Anti-windup #2: Example

• Integrator windup is avoided thanks to back-calculation

• Back-calculation only requires tuning one parameter, the time constant Tt. But 
it only applies to PID control.



Benefits of the anti-windup scheme

• Let’s look at the difference between having and not having an anti-windup 
scheme

• Note that in case of wind up we 
have:

‣ Large output oscillations

‣ Longer time to reach steady-state

‣Peaks of control signal



PID limitations

While being widely used, PID controllers have some limitations

• PID are feedback controllers with constant gains. Thus, their behavior is 
reactive and cannot vary across situations (e.g. different process conditions).
○ Gain scheduling (changing gains) can be used.

• They do not explicitly incorporate process knowledge, which, if known, can 
greatly increase controller performance. 
○ Simple feedforward can already improve tracking performance.

• PID is based on a linear process model. 
○ Linearization in current or intended operating point.



Learning outcomes

By the end of this lecture, you should be able to:

• Design practical PID controllers for applications 

• Design anti-windup schemes to avoid wind-up


