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Linear dynamical system
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O in discrete case

y(t) = ih(i)u(t ~i) & y(t) = H(q)u(t)

When impulse response h (or transfer function H) is approximated in Laguerre

basis, whose orthogonal basis functions are I, (or basis transfer functions L,) k=
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It can be seen that

1. Qutput is a linear combination of the outputs of Laguerre filters z,(t)

2. 7,(1) are the coefficients of Laguerre expansion of the past input signal
u(t) at time instant t.

3. Description of history of input realizes the state of the system in a very
natural way. Output is a linear mapping from the state.

4. Laguerre representation is efficient when the impulse response has
basic form suitable for Laguerre basis and Laguerre parameter has
been selected so that Laguerre functions cover the essential history.



Reduced Wiener representation

The starting point is Volterra representation for nonlinear systems (SISO)
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When Volterra kernel functions h, , i.e. generalized impulse responses, are
approximated in p-dimensional Laguerre basis
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It can be seen that

1. Output is now a non-linear combination of the outputs of the Laguerre
filters z,(t), power series F.

2. Laguerre representation of the past input realizes the state of the non-
linear system in a natural way. Output is now a non-linear mapping from
the state.
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’Feedforward’ Wiener-NN model

Barron A. (1993): approximation rate and parsimony of the parameterization of
the MLP network are surprisingly advantageous in high-dimensional settings
(e.g. compared with finite power series)
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’Feedforward’ Wiener NN-model
For modeling of dynamic systems which have finite memory
Model capable for simulation; NN trained as static mapping
State-space model,
e Orthogonal representation of the past inputs as state. Linear Laguerre
dynamics as state equation

e NN as static nonlinear measurement equation
e Extended Kalman filter can be used for state estimation

Results of the research on robust identification of linear systems (Méakila ,
Wahlberg et al.) can be applied to modeling of non-linear systems

Structural a priori information can be included in the model by selecting a
suitable basis and parameterizing it roughly with regard to time constants.

e Laguerre basis suitable for damped and slightly oscillating systems
e Kautz basis for oscillating systems, Meixner etc.

e Active research on orthogonal approximations of linear dynamic
systems is going on.



Wiener-NN with feedback model

If the system has infinite memory (for example integrating process) or is

(partly) autonomous,
feedback is needed.
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State-space model, the state vector consists of Laguerre representations of the
past inputs and the past outputs
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Comparision with ‘regression’ type NN-models

9(t‘9): fran ((P(t’ ‘9)’ 6’)

The content of regression vector ¢, sliding data windows, form the state
e NFIR u(t - k) regressor,
e NARX u(t- k) and y(t - k) regressors, predictor
e NOE u(t - k) and A regressors simulator

[ J
In Wiener-NN models, orthogonal representations of the past signals,

calculated on-line by linear filters, are used instead of sliding data windows



When p. = 2/T
Laguerre representation =sliding data window

Use and benefits of Wiener-NN with feedback

NFIR Wiener NN is the ‘feedforward’ Wiener-NN, above

NARX Wiener-NN is suitable for use as on-line predictor,
e Training of as static mapping, for instance LM

NOE Wiener-NN is suitable for use as simulator.
e Training must base on model predictions with current parameter

estimates; feedback must be taken into account during training.

e Extended Kalman filter used for training
Tuning of the converge by scaling the system covariance matrix

Linear Laguerre dynamics

Linear discrete Laguerre transfer function, i=0,1,2, ...
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For all signals of certain type, for instance inputs vector
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Wiener-MLP with feedback in state-space form.

2,(t) = Rz (t=2) + Gyu(t—1) +wy,
{Zs(t) = Fyzo(t—1) + G, Sf (2, (t —1), z5(t —1),6) +w, (15)
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S selects the feedback and has the following form.

(16)

The state-space model for the NOE-estimation of parameter with
Extended Kalman filter
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The linearizations around the best current estimates are needed for

convariance propagations and updatings and for gain calculation

Extended Kalman filtering can be interpreted as an approximate solution to the
minimization of
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e Kalman filter takes into account model predictions with instantaneous
parameter estimates, but also corrects model predictions with a robust
mechanism towards the real ones towards the real trajectory.

e The model with instantaneous parameter estimates need not be stable.

Procedure for NOE-type parameter estimation
e Rough initial training as a NARX-type model, MLP a static mapping
Training with Extended Kalman filter

e Several epochs. The estimates of the ordinary state are initialized to
right values at the beginning of epochs.

e The filter is tuned to correct parameter estimates quite vividly at the
beginning, and then gradually, to freeze the estimates along with the
convergence.

Elements Q, are scaled smaller round by round.

e The elements of the whole Q can be decreased because
model predictions become also better as the parameters converge to
“right” values.

Experimentally, it is reasonable to let both Q, and Qs to decrease at
the same rate from epoch to epoch.
For example
Qs(t)= diagonal(0.1/(10**(epoch-1))),
Qy(t)=diagonal(0.01/(10**(epoch-1)))
for the measurements R= diagonal(0.01).

e Itis according to the NOE-principles to rely increasingly on the model
predictions as the estimation converges.



Case 1: Identification of simulation model for Bakers yeast
growth process

X=u(.)x—Dx, D=VE
V=3.71,Y=0.11, (A=28.3, B= 26.5 and C= 6 mg/l).
g 1O, D(S° -s), ,u(x,s):L
Y (B+s)(C+x)

Wiener-MLP with feedback, MLP (6-5-2)

Laguerre representations for biomass X, substrate s (2+2), Laguerre parameter p_ = 2.
Laguerre representations for both inputs, D and S° (1+1), Laguerre parameters p.=3.
The initial trainig as NARX with LM, 10 epochs.
NOE-type estimation with Extended Kalman filter, 5 epochs, covarances above.
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Case 2: Simulation model for Tricoderma fungi fermentations (150
m®) producing entzyme

Production fermentations 6025, 6046, 6056 and 6063
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Wiener-MLP with feedback, MLP (6-3-2)

Laguerre representation (2) for input, substrate feed, p,=0.3.
Laguerre representations (2+2) for outputs fed back, s and a, p,=0.3.
Initial parameters by NARX-type estimation, five epochs.

NOE estimation, five epochs

Q(t)= diagonal(0.1/(10**(epoch-1))), R = diagonal(0.01).

Training, fermentations 6046 and 6056
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Testing, fermentations 6025
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Qs(t)= diagonal(0.1/(10**(epoch-1))), Q4(t)= diagonal(0.05/(10**(epoch-
1)),
R = diagonal(0. 1).

Training, fermentations 6025 and 6046
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Conclusions

The classical Wiener-representation forms mathematically precise basis
for dynamic NN-models.

NNs provide a flexible way to realize the Wiener-models.

When feedback is added, also partly or wholly autonomous systems can
be modeled.

Structural a priori information can be contained in the model in selecting
the basis and its parameter(s). Wiener-MLP models are robust and low-
dimensional.

Identification of both the linear dynamic and the static nonlinear
mapping in the same time is difficult.

Extended Kalman filter can be well used for parameter estimation of the
NOE-type models.

In the NARX case, it does not provide any extra benefit

Extended Kalman filter can be also used as state estimator in the case of
different Wiener-MLP models.



