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Linear dynamical system 
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When impulse response h (or transfer function H) is approximated in Laguerre 

basis, whose orthogonal basis functions are lk (or basis transfer functions Lk) k= 

0,1,2,…  
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It can be seen that  

 

1. Output is a linear combination of the outputs of Laguerre filters zk(t) 

 

2. zk(t) are the coefficients of Laguerre expansion of the past input signal 

u(t) at time instant t. 

 

3. Description of history of input realizes the state of the system in a very 

natural way. Output is a linear mapping from the state. 

 

4. Laguerre representation is efficient when the impulse response has 

basic form suitable for Laguerre basis and Laguerre parameter has 

been selected so that Laguerre functions cover the essential history. 



Reduced Wiener representation 
 

 

The starting point is Volterra representation for nonlinear systems (SISO)  
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When Volterra kernel functions hp , i.e. generalized impulse responses, are 

approximated in p-dimensional Laguerre basis  
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It can be seen that  

 

1. Output is now a non-linear combination of the outputs of the Laguerre 

filters zk(t), power series F.  

 

2. Laguerre representation of the past input realizes the state of the non-

linear system in a natural way. Output is now a non-linear mapping from 

the state.  
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’Feedforward’ Wiener-NN model 
 

Barron A. (1993): approximation rate and parsimony of the parameterization of 

the MLP network are surprisingly advantageous in high-dimensional settings 

(e.g. compared with finite power series) 

 

 
Section A Section D

u1(t) z10(t)

L0(q)

z11(t) y1(t)

L1(q)    Nonlinear

... ... ...

z1n1(t)    no memory

Ln1(q) ...

...    static

um(t) zm0(t)

L0(q)    mapping

zm1(t) yp(t)

L1(q)    by NN

... ... ...

zmnm(t)

Lnm(q)

 
 



 

’Feedforward’ Wiener NN-model  
 

For modeling of dynamic systems which have finite memory 

 

Model capable for simulation; NN trained as static mapping  

 

State-space model,  

 Orthogonal representation of the past inputs as state. Linear Laguerre 

dynamics as state equation  

 NN as static nonlinear measurement equation 

 Extended Kalman filter can be used for state estimation  

 

Results of the research on robust identification of linear systems (Mäkilä , 

Wahlberg et al.) can be applied to modeling of non-linear systems 

 

Structural a priori information can be included in the model by selecting a 

suitable basis and parameterizing it roughly with regard to time constants. 

 

 Laguerre basis suitable for damped and slightly oscillating systems 

 

 Kautz basis for oscillating systems, Meixner etc. 

 

 Active research on orthogonal approximations of linear dynamic 

systems is going on. 

 



Wiener-NN with feedback model 
 

If the system has infinite memory (for example integrating process) or is 

(partly) autonomous, 

feedback is needed.  
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State-space model, the state vector consists of Laguerre representations of the 

past inputs and the past outputs  
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Comparision with ‘regression’ type NN-models 
 

     ,,ˆ tfty NN  

 

The content of regression vector  , sliding data windows, form the state  

 NFIR u(t - k) regressor, 

 NARX u(t - k) and y(t - k) regressors,   predictor 

 NOE u(t - k) and  ( )y t ku    regressors simulator 

  

In Wiener-NN models, orthogonal representations of the past signals, 

calculated on-line by linear filters, are used instead of sliding data windows 



 

When pL = 2/T 

Laguerre representation =sliding data window 

 

 

Use and benefits of Wiener-NN with feedback 
 

NFIR Wiener_NN is the ‘feedforward’ Wiener-NN, above 

 

NARX Wiener-NN is suitable for use as on-line predictor,  

 Training of as static mapping, for instance LM 

 

NOE Wiener-NN is suitable for use as simulator.  

 Training must base on model predictions with current parameter 

estimates; feedback must be taken into account during training. 

 Extended Kalman filter used for training 

Tuning of the converge by scaling the system covariance matrix 

 

 

Linear Laguerre dynamics 
 

Linear discrete Laguerre transfer function, i=0,1,2,… 
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Laguerre dynamics in state-space form 
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For all signals of certain type, for instance inputs vector  
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Wiener-MLP with feedback in state-space form.  
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S selects the feedback and has the following form. 
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The state-space model for the NOE-estimation of parameter with 

Extended Kalman filter 
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The linearizations around the best current estimates are needed for 

convariance propagations and updatings and for gain calculation  

 

Extended Kalman filtering can be interpreted as an approximate solution to the 

minimization of  

 

        

    

V y t y t t w t w t

z z

N

t

N

R

S

T T T

t

N

Q

S S

T T T

P

 

 

   

  

 

 
 



1

2
1

1

2

1

2
0 0

1

2

1

2

0 0

2

1 1

0
1

  ( ) ( )

( ) ( )
 



 

 Kalman filter takes into account model predictions with instantaneous 

parameter estimates, but also corrects model predictions with a robust 

mechanism towards the real ones towards the real trajectory. 

 

 The model with instantaneous parameter estimates need not be stable. 

 

 

Procedure for NOE-type parameter estimation 
 

 Rough initial training as a NARX-type model, MLP a static mapping 

 

Training with Extended Kalman filter 

 

 Several epochs. The estimates of the ordinary state are initialized to 

right values at the beginning of epochs.  

 

 The filter is tuned to correct parameter estimates quite vividly at the 

beginning, and then gradually, to freeze the estimates along with the 

convergence.  

 

Elements Q  are scaled smaller round by round. 

 

 The elements of the whole Q can be decreased because  

model predictions become also better as the parameters converge to 

“right” values. 

 

Experimentally, it is reasonable to let both Q and QS to decrease at 

the same rate from epoch to epoch. 

For example 

QS(t)= diagonal(0.1/(10**(epoch-1))), 

Q (t)=diagonal(0.01/(10**(epoch-1)))  

for the measurements R= diagonal(0.01). 

 

 It is according to the NOE-principles to rely increasingly on the model 

predictions as the estimation converges. 



Case 1: Identification of simulation model for Bakers yeast 

growth process 
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0

V = 3.7 l, Y= 0.11, (A=28.3, B= 26.5 and C= 6 mg/l). 

 

Wiener-MLP with feedback, MLP (6-5-2) 

 
Laguerre representations for biomass x, substrate s (2+2), Laguerre parameter pL = 2.  

Laguerre representations for both inputs, D and S
0
 (1+1), Laguerre parameters pL=3. 

The initial trainig as NARX with LM, 10 epochs. 

NOE-type estimation with Extended Kalman filter, 5 epochs, covarances above. 
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Case 2: Simulation model for Tricoderma fungi fermentations (150 

m3) producing entzyme 
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Wiener-MLP with feedback, MLP (6-3-2)  

 

Laguerre representation (2) for input, substrate feed, pL= 0.3. 

 

Laguerre representations (2+2) for outputs fed back, s and a, pL= 0.3. 

 

Initial parameters by NARX-type estimation, five epochs.  

 

NOE estimation, five epochs 

 

Q(t)= diagonal(0.1/(10**(epoch-1))), R = diagonal(0.01). 
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QS(t)= diagonal(0.1/(10**(epoch-1))), Q(t)= diagonal(0.05/(10**(epoch-

1))), 

R = diagonal(0. 1). 
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Conclusions 
 

The classical Wiener-representation forms mathematically precise basis 

for dynamic NN-models.  

 

NNs provide a flexible way to realize the Wiener-models.  

 

When feedback is added, also partly or wholly autonomous systems can 

be modeled. 

 

Structural a priori information can be contained in the model in selecting 

the basis and its parameter(s). Wiener-MLP models are robust and low-

dimensional. 

 

Identification of both the linear dynamic and the static nonlinear 

mapping in the same time is difficult. 

 

Extended Kalman filter can be well used for parameter estimation of the 

NOE-type models. 

 

In the NARX case, it does not provide any extra benefit 

 

Extended Kalman filter can be also used as state estimator in the case of 

different Wiener-MLP models.  

 


