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Week 46-2

LEARNING OUTCOMES

Students are able to solve the lecture problems, home problems, and exercise problems on

the topics of the week:

  The basic building blocks of element contributions: virtual work density and element

interpolant (to the nodal values).

   Derivation of the beam element contribution starting with the basic building blocks

   Element interpolant and shape functions
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EXAMPLE 4.1. Consider the beam truss of the figure. Determine the displacements and

rotations of nodes 2 and 4. Assume that the beams are rigid in the axial directions. Cross-

sections and lengths are the same and Young’s modulus E is constant.

Answer
3

2
7

900Y
f L
EI

     and
3

4
11

1800Y
f L
EI
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1
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3

2

3

4

L

z
x

x
z

x
z
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 The Mathematica code solution is given by ( zf  is specified by its nodal values)

Parameters of the problem can be functions of x. Then, derivation of the element

contribution by using the exact solution may not be practical and, with 2D/3D elements for

plates etc., impossible.
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4.1 VIRTUAL WORK EXPRESSION

To find the virtual work expression of an element without recourse to the exact solution of

a boundary value problem (which may not be available due to non-constant material

properties, distributed forces etc.)

  Start with the basic building blocks: virtual work density for the model and a polynomial

interpolant to nodal displacements and rotations.

  Substitute the interpolant to the virtual work density expression and integrate the density

over the mathematical domain occupied by the element (the density represents virtual

work per unit length, area etc.).

  Rearrange to get the standard form T ( )W   a Ka F .
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VIRTUAL WORK DENSITY

Virtual work densities are concise representations of engineering models (bar, beam, plate,

shell, etc.). For the four loading modes of the beam model virtual (density = virtual work

per unit length)

Bar: x
d u duw EA uf
dx dx
    

Torsion: x
d dw GJ m
dx dx
     

Bending (xz):
2 2

2 2yy z
d w d ww EI wf
dx dx
     

Bending (xy):
2 2

2 2zz y
d v d vw EI vf
dx dx
    

x

V

Ωz
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STRUCTURE ANALYSIS; IMPROVED RECIPE

  Derive the element contributions eW from virtual work density of the model and

polynomial interpolation of the nodal displacements and rotations in the material

coordinate system.

  Express the nodal displacements and rotations of the material coordinate system in terms

of those in the structural coordinate system.

  Sum the element contributions over the elements and their loading modes to end up with

the virtual work expression ( )e e
me E e E mW W W        of structure.

Restructure to get the form T ( )W   a Ka F

  Use the principle of virtual work 0W   a, fundamental lemma of variation calculus

for n a  , and solve the dofs from 0 Ka F .

a new step
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4.2 BAR MODE

Virtual work density: int ext
x

d u duw w w EA uf
dx dx
         

Linear interpolant:
T

1T

2

1( ) x

x

uh x
u x

uxh
   

     
   

N a

Cross-sectional area A, Young’s modulus E, and force per unit length xf  (acting on the x-

axis) may depend on position. Virtual work density depends only on the model but the

interpolant (or approximation) can be chosen in various ways!

x
EA

h
z
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 BAR ELEMENT CONTRIBUTION

T
1 1

2 2

1 1 1
( )

1 1 12
x x x

x x

u u f hEAW
u uh





      
              

, T
X

x Y

Z

u
u u

u

 
   
 
 

i , where 1
X
Y

h
Z

 
   
  

i

Above, xf  and EA are assumed constants and the elements of matrix i (1 1, 2 1, 3 1   ) are

the components of the unit vector i


 in the structural coordinate system. The algorithm of

Mathematica code is based on element contributions in its variational form!

x
EA

h
z
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 First, element interpolant Tu  N a and its variation T Tu   N a a N  are substituted

into the virtual work expression to get (here ]0, [h    and d dx  )

0
( )

h
x

d u duW EA uf dx
dx dx
    

T
T T

0 0
h h

x
d dW EA dx f dx
dx dx

     
N Na a a N 

T
T

0 0
( )

h h
x

d dW EA dx f dx
dx dx

    
N Na a N . 

 If the interpolant is taken to be linear, shape functions and the nodal values are given by

1 h x
xh
 

  
 

N ,
11

1
d
dx h

 
  

 
N , 1

2

x

x

u
u
 

  
 

a , and 1

2

x

x

u
u




 

  
 

a
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 Assuming that Young’s modulus E, cross-sectional area A, and the distributed force xf

are constants, integration over the element domain gives (the expressions of the shape

functions need to be substituted now)

T T
1 1

0 02 2

1 11 1 1( )
1 1

h hx x
x

x x

u u h x
W EA dx f dx

u u xh h h





          
           

        
  

T
1 1

2 2

1 1 1
( )

1 1 12
x x x

x x

u u f hEAW
u uh





      
              

. 

Derivation out of virtual work densities works also when Young’s modulus E, cross-

sectional area A, and the distributed force xf  are not constants!



Week 46-12

EXAMPLE 4.2 Consider the bar model and a piecewise linear interpolant of the nodal

values. Determine the equivalent nodal forces F  of the element contribution
int extW W W    , in which int TW   a Ka   and ext TW  a F , when length of the

element is h and

(a) xf is constant,

(b) xf  is piecewise linear T
xf  N f , where the nodal values are T

1 2{ }x xf ff ,

(c) 1( )
2x x

xf F
h

  , where   is the Dirac-delta and xF  is a point force.

Answer (a)
1
12

xf h  
  

 
F     (b) 1

2

2 1
1 26

x

x

fh
f

  
   

   
F     (c)

1
12

xF  
  

 
F
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 The equivalent nodal forces are obtained by using Tu  N a in the virtual work

expression of the external forces

ext
0
h

xW uf dx   , Tu  a N and 1 h x
xh
 

  
 

N 
0

1h
x

h x
f dx

xh
 

  
 

F 

 With the constant, linear and Dirac delta distributions

0 0

11 1
12

h h x
x x

h x h x f hf dx f dx
x xh h
      

       
     

 F 

T
1 1

0 0 2 2

2 11 1
1 26

h h x x
x

x x

f fh x h x h x hf dx dx
f fx x xh h

            
           

         
 F 

0

11 ( )
12 2

h x
x

h x FhF x dx
xh


   

     
   

F 
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EXAMPLE 4.3 The bar of the figure (EA is constant) is loaded by a quadratic distributed

force ( )2xf f     where /x L  . Determine the displacement at the free end by the

finite element method. Use one, two, and four elements of equal lengths.

Answer
2

2
5

12X
f L
EA

u    no matter the number of elements  (exact
25( )

12
f L
EA

u L   )

L
EA X
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 Distributed force xf , Young’s modulus E , and the cross-sectional area A may depend

on x . In Mathematica code a quadratic distributed force xf  is defined by its values on

the nodes and at the midpoint.

Above, the problem has been solved three times with 1, 2, and 4 elements and displacements

at the free end are given as a list (see the Mathematica notebook for the details).
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EXAMPLE 4.4 The cross-sectional area of a bar is given by 0/ 1 / (2 )A A x L  . Assuming

that the approximation of displacement u is (piecewise) linear, Young’s modulus E and

density  of the material are constants and distributed loading xf  is due to the gravity,

determine the displacement at the free end of the bar. Use two elements of equal length.

Answer
229( )

70
g Lu L

E


   ...  (exact
23 log 4( )

4
g Lu L

E


  ,   error  2.7% )

E, 

x,X

g
L
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   Element interpolants of displacement, cross-sectional area (in terms of its nodal values),

and weight per unit length are here

  1

2

1( ) x

x

u
u x h x x

uh
 

   
 

   1

2

1 1 1 x

x

udu
udx h
 

   
 

 and   1

2

1 1 1 x

x

ud u
udx h


 

   
 

,

  1

2

1( )
A

A x h x x
Ah

 
   

 
   1

2
x

Agf gA h x x
Ah


 

    
 

.

   Virtual works of internal and external forces per unit length of a bar are given by

 
T T

1 1 1 1int
2 22 2 2 2

1 1 1
1 1

1 1 1
x x x x

x x x x

u u u uEA EAw
u u u uh h

 


 
           

                        


 
T

1 11int
32 22

1 1
1 1

x x

x x

u uAEw h x x
u uAh





     

             
,
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T

1 1ext
22 2

1x

x

u Ah x
w h x x g

u Axh


 


    

      
    

.

   Element contribution of a typical element is obtained as integral over the domain

occupied by the element

T
1 1int int 1 2

0 2 2

1 1( )
1 12

h x x

x x

u uE A AW w dx
u uh


 


    
          
 ,

T
1 1ext ext

0 2 2

2 1
1 26

h x

x

u AghW w dx
u A
  

    

      
    

 

T
1 1 1int ext 1 2

2 2 2

1 1 2 1
( )

1 1 1 22 6
x x

x x

u u AA AE ghW W W
u u Ah
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   Element contributions of the two elements

T
1 0 0

2 2

0 01 1 117( )
1 1 104 48X X

EA gLAW
u uL





      

              
( 1 0 ,A A 0

2
3

4
AA  ),

T
2 22 0 0

3 3

1 1 85( )
1 1 74 48

X X

X X

u uEA gLAW
u uL

 



      

              
( 0

1
3 ,

4
AA  0

2 2
AA  ).

   Virtual work of the structure is the sum over elements 1 2eW W W W     
T

2 20 0 0 0
2 2

3 3

5 5 87( 10) ( )
5 5 74 48 4 48

X X
X X

X X

u uEA A gL A gLAW u u
u uL L

 
 


      

                

T
2 20 0

3 3

12 5 18
( )

5 5 74 48
X X

X X

u uEA gLAW
u uL
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   Principle of virtual work and the fundamental lemma of variation calculus give

T
2 20 0

3 3

12 5 18
( ) 0

5 5 74 48
X X

X X

u uEA gLAW
u uL

 



      

               
2

3

X

X

u
u



 

 
 



20 0

3

12 5 18
0

5 5 74 48
X

X

uEA gLA
uL

     
         



12 2 2
2

3

12 5 18 5 5 18 25 / 84
5 5 7 5 12 7 29 / 7012 12 35

X

X

u gL gL gL
u E E E

  
           

                       
. 
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 In the Mathematica code of the course, the given quantities may vary linearly
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4.3 BENDING MODE

Virtual work density:
2 2

int ext
2 2yy z

d w d ww w w EI wf
dx dx
         

Cubic interpolant:

T2
1

2 1
2 2

2 2

(1 ) (1 2 )

(1 )
( )

(3 2 )

( 1)

z

y

z

y

u

h
w x

u

h

 
 

 
 

               
   

      

 where x
h

   .

xEIyy

h
z
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 BEAM BENDING ELEMENT

T
1 1

2 21 1
3

2 2
2 22 2

12 6 12 6 6
6 4 6 2

( )
12 6 12 6 612

6 2 6 4

z z

y yyy z

z z

y y

h hu u
EI h h h h hf hW

u h h uh
hh h h h


 



 

        
                           

            

, T
X

z Y

Z

u
u u

u

 
   
 
 

k etc.

Above, zf  and yyEI  are assumed to be constants and the elements of matrices i, j and k (

1 1, 2 1, 3 1   ) are the components of the unit vectors ,i j
 

 and k


in the structural

coordinate system.

xEIyy

h
z



Week 46-24

 First, element interpolant (approximation) Tw  N a  and its variation Tw  a N  are

substituted into the virtual work expression to get

2 2

2 20
( )

h
yy z

d w d wW EI wf dx
dx dx
    

2 2 T
T T

2 20 0
h h

yy z
d dW EI dx f dx
dx dx

     
N Na a a N 

2 2 T
T

2 20 0
( )

h h
yy z

d dW EI dx f dx
dx dx

    
N Na a N . 

 The shape function expressions and their second derivatives are (Mathematica is useful

in the calculations)
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2

2

2

2

(1 / ) (1 2 / )

(1 / ) /

(3 2 / )( / )

( / ) ( / 1)

x h x h

h x h x h

x h x h

h x h x h

  
 
  

  
 

 
  

N and
2

2 2

6(2 / 1)
2(3 / 2)1
6(1 2 / )
(3 / 1)

x h
x h hd

x hdx h
x h h

 
      
   

N .

 In the next step, the shape function expressions are substituted into the virtual work

expression. Integration over the domain occupied by the element gives the element

contribution. A derivation along these lines is valid also when the given functions are

not constants!
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EXAMPLE 4.5 The integral representation of equivalent nodal forces is e zf d


 F N .

Determine the equivalent nodal forces of a beam element for (a) const.zf  , (b)

1 2(1 )z z zf f f    , and (c) ( / 2)z zf F x h   (Dirac delta at the midpoint), when

 T2 2 2 2(1 ) (1 2 ) (1 ) (3 2 ) ( 1)h h              N

Answer

6

612
z hhf

h

 
    
 
  

F , 1 2

21 9
3 2
9 2160 60

2 3

z zh hhf hf

h h

   
           
   
      

F ,  and

4

48
z hF

h

 
    
 
  

F
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2

2

0 2

2

(1 / ) (1 2 / ) 6
(1 / ) /

612(3 2 / )( / )

( / ) ( / 1)

h z
z

x h x h

h x h x h hhff dx
x h x h

hh x h x h

               
   

      

F 



2

2
1 2

1 20 2

2

(1 / ) (1 2 / ) 21 9
(1 / ) / 3 2

[(1 ) ]
9 2160 60(3 2 / )( / )
2 3( / ) ( / 1)

h z z
z z

x h x h

h x h x h h hhf hfx xf f dx
h hx h x h

h hh x h x h

                           
     

          

F 



2

2

0 2

2

(1 / ) (1 2 / ) 4
(1 / ) /

( )
42 8(3 2 / )( / )

( / ) ( / 1)

h z
z

x h x h

h x h x h hFhF x dx
x h x h

hh x h x h



                
   

      

F 
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4.4 INTERPOLATION

Piecewise linear interpolant to nodal values  0 0 1 1( , ), ( , ), ,( , )n nx f x f x f  gives the simplest

continuous polynomial approximation to ( )f x .

Interpolation with piecewise linear polynomials extends straightforwardly to more

dimensions, higher order polynomials, and divisions of the domain into elements.

0 1

5

2
43

interpolation error
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EXAMPLE 4.6 Interpolants of ( , ) / sin(2 / )sin( / ) / 4f x y F x L y L   on square domain

( , ) / [0,1] [0,1]x y L   with triangle and rectangle elements of increasing number.
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ELEMENTS

ξ

Ω

2

2

η

1

1

ξ

η

Ω

1

1

ξ

η

Ω

1

ξ

η

Ω

ζ

1

1
2 ξ

Ω

1 ξ

Ω

1

1

1

ξ

η

Ω

ζ
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SHAPE FUNCTIONS

Shape functions are used to interpolate the nodal values inside the elements. The shape

function iN  of node i  in element e

 is the lowest order polynomial taking the value 1 at node i  and the value 0 at all the other

nodes of the element.

 shape functions should satisfy the previous condition on each edge (as an example, shape

function should be linear on an edge of two nodes)

 Sum of the shape functions of an element should be 1.

The shape functions can often be deduced directly by using the conditions above or/and by

using the Lagrange interpolation polynomials.
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Lagrange interpolation polynomial ( )np x  of degree n and its error formula are for

dataset 0 0 1 1{( , ),( , ), ( , )}n nx f x f x f

{0,1, 1, 1, , }{0,1, , }( ) j
n i j i i ni n

i j

x x
p x f

x x  


 

   ,

( 1)
{0,1, , }

1( ) ( ) ( ) ( )
( 1)!

n
n i n if x p x f x x

n


   
   .

Notice the removal of index i in the product term inside the sum of the interpolation

formula.
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LINEAR SHAPE FUNCTIONS

Piecewise linear approximation in one dimension is continuous in  and a first order

polynomial inside the elements. In element e

Approximation: Tu  N a

Nodal values:  T
1 2u ua

Shape functions: 1

2

1N
N



   

    
  

N where x
h

 

Piecewise linear approximation is the simplest choice e.g. for the bar model.

1 2

u
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 The method based on combining given polynomials gives (use of the scaled coordinate

 simplifies the expressions)

1
2 2

1 2 1 1

1 1 11 1 11 1
1

x x x
x x x x xx xh h




             
                        

N , where x
h

 

 The virtual work expression (e.g. of the bar model) contains integrals of the shape

functions in certain combinations. The most common are (here 1 2] , [e x x   , d dx  ,

and 2 1| |h x x  )

1
12e

hd


 
   

 
 N , T 2 1

1 26e
hd



 
   

 
 NN ,  and

T 1 11
1 1e

d d d
dx dx h

 
    


N N .



Week 46-35

QUADRATIC SHAPE FUNCTIONS

Piecewise quadratic approximation in one dimension is continuous in  and a second order

polynomial inside the elements. In element e

Approximation: Tu  N a

Nodal values:  T
1 2 3u u ua

Shape functions:

2
1

2

3

1 3 2
4 (1 )

(2 1)

N
N
N

 
 
 

   
       

      

N , x
h

 

More nodes can be used to generate higher order approximations!

1 32
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 Derivation based on the Lagrange interpolation polynomials is convenient in the one-

dimensional case. The idea is to write a polynomial vanishing on some set of points and

scale the expression to take the value one at a certain point. In terms of /x h 

1
( 1/ 2)( 1) (2 1)( 1)
(0 1/ 2)(0 1)

N     
   

 
  and 2

( 0)( 1) 4 (1 )
(1/ 2 0)(1/ 2 1)

N     
  

 
  etc.

 Some integrals of the virtual work expression are given by

0

1
4

6
1

h hdx
 
   
 
 

 N , T
0

4 2 1
2 16 2

30
1 2 4

h hdx
 

   
  

 NN ,
T

0

7 8 1
1 8 16 8

3
1 8 7

h d d dx
dx dx h

 
    

  


N N .
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EXAMPLE 4.7 Find the virtual work expression W wd 


  of a bar element, when

( / ) ( / ) xw d u dx EA du dx uf      , the shape functions are quadratic (a three-node

element) and the force per unit length is (a) constantxf   (b) ( 1/ 2)x xf F    . The length

of the element is h .

Answer:

(a)

T
1 1

2 2

3 3

7 8 1 1
( 8 16 8 4 )

3 6
1 8 7 1

x x
x

x x

x x

u u
f hEAW u u

h
u u


 



      
                
            

(b)

T
1 1

2 2

3 3

7 8 1 0
( 8 16 8 1 )

3
1 8 7 0

x x

x x x

x x

u u
EAW u u F

h
u u
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 The quadratic shape functions of a three-node element can be obtained e.g. by using the

Lagrange interpolation polynomials ( /x h  )

2
1

2
2

23

1 3 / 2( / )

4 / 4( / )

2( / ) /

x h x hN
N x h x h
N x h x h

             
   
    

N 
1

2

3

/ 3 4( / )
1/ 4 8( / )

/ 4( / ) 1

dN dx x h
d dN dx x h
dx h

dN dx x h

    
        
     

N .

 Approximation, its derivative and variations needed in the virtual work density are

T
1 1

2 2

3 3

/
/
/

x

x

x

dN dx u
du dN dx u
dx

dN dx u

   
       
   
   

,

T
1 1

2 2

3 3

/
/
/

x

x

x

u dN dx
d u u dN dx
dx

u dN dx


 



   
       
   
   

,  and

T
1 1

2 2

3 3

x

x

x

u N
u u N

u N


 



   
       
   
   

.

 When the approximation is substituted there, virtual work density takes the form
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31 1 1 2 1
T

1 1 1
32 1 2 2 2

2 2 2

3 3 3
3 3 3 31 2

( )
x x

x x x

x x

dNdN dN dN dN dN
dx dx dx dx dx dxu u N

dNdN dN dN dN dNw u EA u N f
dx dx dx dx dx dx

u u NdN dN dN dNdN dN
dx dx dx dx dx dx


 



 
 

      
                         

 
  

 Virtual work of the external volume force is given by integral
0
h

W wdx   . If

constantxf   or ( 1/ 2)x xf F    , the outcome is

T
1 1

2 2

3 3

7 8 1 1
( 8 16 8 4 )

3 6
1 8 7 1

x x
x

x x

x x

u u
f hEAW u u

h
u u


 



      
                
            



T
1 1

2 2

3 3

7 8 1 0
( 8 16 8 1 )

3
1 8 7 0

x x

x x x

x x

u u
EAW u u F

h
u u
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CUBIC SHAPE FUNCTIONS

Piecewise cubic approximation has continuous derivatives up to the first order in  and is

a third order polynomial inside the elements.

Approximation: Tu  N a

Nodal values:  1 1 2 2/ /u du dx u du dxa

Shape functions:

2
10

2
11

220

221

(1 ) (1 2 )

(1 )

(3 2 )

( 1)

N
N h
N
N h

 

 

 

 

             
   

      

N

In xz plane bending zu u  and / ydu dx    , in xy plane yu u  and / zdu dx  .

20u

21u

11u

1 2

11N

10N

u

20N
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 In one-dimensional case, the brute force approach works. Let us collect the coefficients

of the monomials of the shape functions into a matrix, and use the definition of the shape

functions

 
10

11
2

20
321

1N
xN

A
N x
N x

  
  

      
   
      

   2

3 2

1 0 1 01 0 0 0
0 1 10 1 0 0

0 0 1 0 0 0 2
0 0 0 1 0 0 3

h
A

h h

h h

  
  
      
  
    



   
 
 
 

1
10

11
2 2

20
3 2

2

2

2

31 22

1 0 1
1

1

0

1 20 1
0 1

0 2
1

3 2
0 0 3 1

N
h xN

N h h x
N h

h

hh x

 

 

 

 

                           
      
             

 

 







 

,  where x
h

  .
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LINEAR SHAPE FUNCTIONS

Piecewise linear approximation in two-dimension is continuous in  and linear inside the

elements of triangle shape. In element e

Approximation: Tu  N a

Nodal values:  T
1 2 3u u ua

Shape functions:

1

1 2 3

1 2 3

1 1 1 1
x x x x
y y y y


   

     
     

N

Triangle element is the simplest element in two dimensions. Division of any 2D domain into

triangles is always possible, which makes the element quite useful.

1

2

3

1

1
1
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 Let T
1 2 3{ }N N NN  be the shape functions taking the value one at the vertices

1 1 1( , )x yx , 2 2 2( , )x yx  and 3 3 3( , )x yx , respectively. Then

2 3 2 3 2 3 2 3

2 1 3 1 1 2 3 2 1 3 2 3

1 3 1 3 1
3

3 1 3

2 1 3 1 1 2 3 2 1 3 2 3

1 2 1 2 1 2 1 2

2 1 3 1 1 2 3 2

1

1 2

1 3

1

2

1 1 1 1

x y x y xy x y xy x y
x y x y x y x y x y x y

x y x y xy x y xy x y
x y x y x y x y x y x y

x y x y xy x y xy x y
x y x y x y x y x y

x x x x
y y y y
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 Some integrals needed, e.g., in the virtual work expression of the thin slab model, are

1
1

3
1
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Week 46-44

BI-LINEAR SHAPE FUNCTIONS

Bilinear approximation in two dimensions is continuous on  and linear with respect to

both coordinates inside the elements of rectangular shape. In element e and notation

/ xx h  , / yy h 

Approximation: Tu  N a

Nodal values:  T
1 2 3 4u u u ua

Shape functions:

(1 )(1 )
(1 )

(1 )

 
 

 


  
     
  

N

The ordering of the node numbers varies in literature.

1
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Week 46-45

LINEAR SHAPE FUNCTIONS

Piecewise linear approximation in three dimensions is continuous in  and a linear

polynomial inside the tetrahedron elements. In a typical element e

Shape functions:

1

1 2 3 4

1 2 3 4

1 2 3 4

1 1 1 1 1
x x x x x
y y y y y
z z z z z


   
               

N

Tetrahedron is the simplest element in three dimensions. Division of any 3D domain into

tetrahedrons is always possible, which makes also this element quite useful in practice.

1

23

x
y

z

4



Week 46-46

TRI-LINEAR SHAPE FUNCTIONS FOR A BODY

Approximation is continuous on  and tri-linear inside an element. In a typical element and

with notations 1( ) / xx x h   , 1( ) / yy y h   , and 1( ) / zz z h   ,

(1 )(1 )(1 )
(1 )(1 )

(1 ) (1 )
(1 )

(1 )(1 )
(1 )

(1 )

  
  

  
 
  

  
 



   
   

  
      
 
 

 
  

N

Bi-linear and tri-linear shape functions of 2D and 3D cases are products of the linear shape

functions of the 1D case.

1 2

3 4

5

7 8

6

x
y

z



Week 46-47

EXAMPLE Consider the structure of the figure consisting of triangle and quadrilateral

elements. Write down the shape functions of the elements in the xy coordinates (the sum

of the shape functions of an element is always 1).

Answer 1 1
h x y

x
h

y

  
   
 
 

N , 2 1
h y

x y h
h

h x

 
    
  

N , 3
2

(2 )( )
( )( )1

( )
(2 )

h x h y
x h h y

x h yh
h x y

  
      
  

N , 4 ?N

x1 2

y

h

h

3
3 2

1

1

2

h
1 2

4 3

3

1 2

3

4

h


