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In the previous lecture...

¢ \We revisited effect of feedback on input-output dynamics

R(z) ~ P(2)K(2) Y (2)
" 2 = T PR (R
* And error dynamics
() = —— - R(2)




In the previous lecture...

¢ Discretized PID controllers

P(t) = Kpe(t) P(kh) = Kpe(kh)

t k—1
I(t):KZ-/ e(r)dr = = K, Z (nh)h = Khz

de(t
D(t) = K420 D(kh) = K SEh=ckh=h) _ Ki Ag ()

getting
k—1 K
u(kh) = K,e(kh) + K;h Z (nh) +TdAe(lch)

and In z-domain




On this lecture

We will talk about
e Deterministic and stochastic disturbances
e Models for stochastic disturbances/noise
We will also revisit

e State observers

By the end of this lecture, you should be able to:

e Explain different types of disturbances.
e Understand the characteristics and effect of noise in dynamical processes

e Compute the mean and covariance matrices of dynamical processes
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Disturbances
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e Existence of disturbances is one of the key

reasons why a control system is needed

e Based on where they appear in the process,

they are mainly classified into:

- process disturbances (due to modeling
or external factors)

- measurement disturbances (i.e., we can
only obtain noisy measurements of the
system output)

e Based on the type of disturbance, they are
classified into:
- deterministic (e.g., impulse, step, ramp)
- stochastic
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Process Disturbances

e Typically load disturbances, typically vary slowly.
e May also represent modeling inaccuracies/errors.

e How process disturbances affect the process?
- Often modeled as additive components, affecting process input.
- Or in the middle of a two-part process.

Process
disturbance
process
output

Controller ]—>®4>[ Process ]—V

—

————————————————————————————————————————————————————————————

Process
disturbance
process
reference
gl output
P _+> Controller H Process ]——»

Process
Measurement disturbance

process
T output

—p| Controller H Process1 ]—>®4>[ Process?2 ]—»

P —
D e ——

Measurement
noise

Aalto University
School of Electrical
B Engineering



Measurement Disturbances

e Often vary fast, often random in nature.

e How measurement disturbances affect the process?
- Often modeled as additive components, affecting measurement.
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Sometimes word “disturbance” is reserved for process disturbances,
and “noise” refers to measurement disturbance.



Reduction of effects of disturbances

e Reduce the source of the disturbances (related to process and
measurement design)

e Examples:
- Buffer vessel in process industry
- Better positioning of the measurement sensor
- Better sampling
- Sensor improvement (for obtaining less noise) or replacement (with
sensors of less noise)
- More sensors and use of sensor fusion

Which of these reduce process disturbances, which measurement disturbances?



Reduction of effects of disturbances

° By local feedback
For example:
m reduce variations in supply pressure to valves by introducing a pressure
regulator

m control current of electric motor to achieve desired torque

- Necessary that disturbances enter the system locally in a well-defined way

- Necessary to have access to a measured variable that is influenced by the
disturbance and to have access to a control variable that enters the system
in the neighborhood of the disturbance

- Dynamics relating the measured variable to the control variable should be
such that a high-gain control loop can be used - no need to have detailed
characteristics about the process
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Reduction of effects of disturbances

e By feedforward control:

{ Compensator
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point Reference
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- Disturbance is measured, and a control signal that attempts to counteract the
disturbance is generated and applied to the process

- Particularly useful for disturbances generated by changes in the command or
reference signals

- Also for modellable model disturbances (e.g. gravity compensation for robot)
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Reduction of effects of disturbances

e By prediction:

- Extension of the feedforward principle that may be used when the disturbance
cannot be measured

- Disturbance is predicted using measurable signals, and the feedforward signal
IS generated from the prediction

- Not necessary to predict the disturbance itself; sufficient to model a signal that
represents the effect of the disturbance on the important process variables
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Effect of control on disturbances
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Effect of control on disturbances
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e For pure feedback control (Gang of Four)

N,R to X
RtoY Dto XY
D to U PO '
1+ PC 1+ PC
3 1
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N,R to U NtoY

How do we want these to behave?



Effect of control on disturbances
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Effect of control on disturbances
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e Feedback + feedforward (Gang of Six)

N to X
Rto XY D to U D to XY
PCF PC
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CF C 1
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R to U N to U NtoY

Feedback can be designed to deal with disturbances,
feedforward response to reference changes!
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Stochastic models of disturbances

e Natural to use stochastic (random) concepts to describe disturbances

- possible to describe a wide class of disturbances — permits good
formulation of prediction problems

e A stochastic process (random process, random function) can be regarded as a
family of stochastic variables {z[k|, k € T'}. In this context, T'is the time index

¢ A stochastic process may be considered as a function of 2 variables,
- If variable w is fixed, x| ¢, w] is called realization

- If variable £k is fixed, x|k, ¢] is a random variable

Realization

x(t,an)

x(t,an)
x(t,an)

x(t,an)




Concepts of stochastic processes

e The distribution function of a stochastic process is defined as follows
(P denotes probability)

F(§17€2a°°°7€n;k17k27°"7kn) = P{x[kl] < 51737[]{:2] < €2a°°°7x[kn] < gn}

e The expected (or mean) value of a stochastic process x is defined as

mlk] £ E{:c[k]} / EAF (& k)

e The variance is defined as

ai[k] = Var{fv[k]} 2 E{(a:[k] — m[k])2} _ E{ (a:[k] B E{x[k]})Q}
+00
= [ (e~ mik)*aren

— OO



Concepts of stochastic processes

e For computing the mean and variance, sometimes the derivative of F, called
the density function, is used instead, where

/+00 p(x)dr =1

— OO

® The expected (or mean) value of a stochastic process x is simplified to

+00
mlk] = E{z[k]} = /_ rp(x)dx

® The variance is simplified to

—+ 00

o =var{z} = E{ (z — E{az})z} = / (z — E{a:})zp(a:)da:

— OO



Some useful properties

e Suppose a is constant, x and y are stochastic variables. Then

FE{a} =a
F{azx} = aE{x}
E{z +y} = E{z} + E{y}

var{a} =0

var{az} = a’var{z}

¢ [f x and y are independent random variables, then
E{xy} = E{x}E{y}

var{z + y} = var{z} + var{y}

' choolfofElccttyrical . . g
Al For refreshing memory from basic probability course



Concepts of stochastic processes

¢ The definitions of mean and variance are extended to vector functions;
the variance is extended to covariance

e The expected (or mean) value of a stochastic process x is given by
mlk] £ E{x[k]}
® The variance Is given by
var{x[k]} = E{(x[k] — mlk])(x|k] — m[k])T}
= B{ (x[K] - B{x[K]}) (x[k] - B{x[K]})" }
® The covariance function is given by
ryx (S, k) = cov{x[s],x[k]} = E{(x[s] — m|s])(x[k] — m[k])T}
= B{ (x[s] — E{x[s]}) (x[k] — E{x[k]})" ]
= [ [ &~ mish& — mik)TaF (@, &5 k)



Stationarity and covariance

¢ A stochastic process is called stationary if the finite-dimensional distribution
of {z[k1], z[k2], ..., z[kn]} is identical to that of {z[k1 + k|, z[ke + k], ..., z[kn + K]}
forall k,n,kq1,ks, ..., kn,

® The process is weakly stationary, if the two first moments of the distributions
(mean and covariance) are the same for all values of £. The value of the
covariance function then depends only on the time difference r = s — &, i.e.,

rxx(8, k) = rxx (s — k) = rxx(7) = cov{x[k + 7], x[k] }

e From the definition it is immediate that variance is auto-covariance when 7 =0
rxx(0) = cov{x[k], x[k]} = var{x[k]}

* The auto-covariance function describes how the signal correlates with itself at
different time instants (one of the tools used to find patterns in the data):

- A big positive covariance value means strong correlation
- Zero means no correlation
- A negative value means negative correlation.



Auto-covariance, correlation & cross-covariance

e What is the largest value of auto-covariance?

[T (7)] < Tx (0)

e The auto-covariance matrix is symmetric, i.e., ryxx(7) = rxx(—7)

Tyx(7)

e The correlation function is the normed covariance function, i.e., px(7) =
- Intuitive appeal as a measure of dependence
- Useful for confirming (or disproving) linear relationships
- Useful for analyzing and interpreting regression models

Txx(0)

e Cross-covariance: ryy (1) = cov{x[k + 7], y[k] }

® The cross-covariance function describes how a signal correlates with another
signal. By using cross-covariance it is possible to investigate, e.g., which
signals in a large system correlate with each other
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Estimations from data

¢ Estimates of the proposed concepts can be calculated directly from data.
For example:

N
Expected value: E{x} ~ % Z

N
Cross-covariance: ryy (7 % > (x[k + 7] — my[k + 7)) (y[k] — my[k])"
k=1



White noise in discrete-time systems

e At each time instant the signal value is a random variable without any
correlation to any other signal (or to itself) at any time instant

r

o, 7=0

Auto-covariance: (1) = {

0, 7#0
. 0'2
Auto-spectral density: ¢(w) = o
70
b r(» } 4o
5. /| [ —
¢ o?2rx
T 9,
g |
-1 0 1




Colored noise in discrete-time systems

¢ All needed stochastic signals can be generated by filtering white noise, so
that:

- the covariance “spreads” (a sample correlates with previous values and
values to come), and

- in the spectrum certain frequencies are weighted more (the signal is more
powerful at certain frequencies)




Example of processes
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Stochastic difference equations

e Consider the representation
x[k + 1] = &x[k]| + v[k]

where is an independent zero-mean random variable with covariance

(correlates neither with nor with itself at any time instant); is therefore white
noise

* Suppose that the initial state has the mean m  and covariance . Consider the
behavior of as a function of time: m|k] = E{x|[k]}

¢ Take expectations from both sides

E{x|k + 1|} = E{®x|k] 4+ v|k]} = E{®x|k]|} + E{Vv|k]} = ® E{x[k]} + E{Vv|k]}
. S

= mlk + 1] = dPm|k|, m[0] = m,

* The mean value behaves exactly according to system dynamics!



Stochastic difference equations

* As for the covariance function, use a new variable: x[k| = x[k] — m[k]

¢ For the state covariance :

Plk] = cov{x[k], x[k]} = E{x[k]x" [k]}

e \We want to see how the state covariance evo

%[k + 1x" [k + 1] = (Px[k] + v[K]) (Px[k] + v

ves over time. Towards this end:

)"

= ((I)i'c[k] + v[k]) ()"cT k]®T +vT [k])
= dx[k]xT [k]®T + ®x[k]v! [k] + v[k]xT[k]®" + v[Ek]v' [K]

¢ Take expectations in both sides:

E{x[k + 1]x" [k + 1]} = E{2x[k]x" [k]®"} + E{®x[k]v" [£]} + E{v[k]X" [k]®"}

+ E{v[kIVT[k]}

=R

-



Stochastic difference equations

e Therefore, we obtain a dynamic equation for the covariance:

E{x[k + 1]xT [k + 1]} = E{®x[k]xT [k]®T} + R,
= dE{x[k|xT[k]}®T + R,

= Plk + 1] = ®P[k]®' + R, P[0] = Ry

e Consider the state auto-covariance for different values of k. For example, if :

rox(k+ 1,k) = E{x[k + 1]x1[k]} = E{(®x[k] + v[k])x' K]}
= OE{x[k]x'[k]} + E{v[k]x'[Kk]} = ®P[k] + 0 = ®P[k]

e By repeating for any value of

ryx(k+7,k)=®"Plk], 72>0



Stochastic difference equations

e |f the observation equation is
ylk] = Cx[k]

it follows

my k| = C'mylk|
ryy(k+7,k) = Cryx(k + 7,k)CT
ryx(k+ 7,k) = Crxx(k + 7, k)

e \What if the observation is given by
ylk] = Cx[k] + w|K]

where w|k] is white noise?



Example

e Consider the stochastic process:

x|k + 1] = ax|k| 4+ v|k]
ylk] = zlk] + elk]
where v[k] and e[k] are white noise with covariance r, and r,, respectively. The

Initial state at time instant ko has mean value m 0 and auto-covariance r, Find
how the mean, covariances evolve over time.

Solution:
* For the mean value: mlk + 1| = am[k], mlko] = myg

= m[k] = a* " *om[k]

e For the covariance: Pk + 1] = a*P[k] + 1, Plko] = 7o

1 — a2(k—ko)

= P[k] = a?>(F~*0)
[] a To + 1 _ 42

1
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Example

e Hence, the auto-covariance is given by

e (LK) = at=*Plk], 1>k
T ok tPIK], < K

e Assume that the process is stable (|a| < 1) and it has been running a long
period of time (£ — oo). Then, it follows

1 alTl
m|k] — 0, Plk] = 2T Tez(ly k) = 13e(T) = o

The output covariance then becomes

1 _
1—a2 1 + ro, T = 0

ryy(T) = i
1—a2 r1, T # 0




Recall: state observers

e Recall the approach using the observer/estimator

X[k + 1] = ®&x|k| + T'ulk] + Ky|k]
= Ox[k] + T'ulk] + K (y[k] — 9[K])
= ®x|k] + T'ulk] + K (ylk] — Cx[k])
= (® — KO)x|k| + Tulk| + Ky|k]

and the performance was studied by comparing the estimate with the real
state:

%[k + 1] = x[k + 1] — %[k + 1]
= (®x[k] + Tulk]) — ((® — KCO)X[k] + Tulk] + KCx[k])
= (® - KCO)(x[k] — %[k])
= (& — KC) x[k] = ®,X[k]
@,

* Matrix K was chosen such that the eigenvalues of ® are at desired places in
the complex plane.
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Learning outcomes
By the end of this lecture, you should be able to:

e Explain different types of disturbances.

e Understand the characteristics and effect of noise in dynamical processes

e Compute the mean and covariance matrices of dynamical processes



