Exercise 9 - Solutions

\#1 Finding Pareto-optimal solutions with Excel

a) The MOO problem is

$$
\operatorname{vimax}_{\left[x_{1} x_{2}\right] \in \mathbb{N}^{2}}\left[\begin{array}{c}
2 x_{1}+x_{2} \\
x_{2}
\end{array}\right]
$$

s.t.

$$
2 x_{1}+3 x_{2} \leq 20
$$

b) See the Excel model solution on MyCourses site.
c) The overall value of an alternative (ticket buying strategy) is given by the function $V\left(y_{1}, y_{2}\right)=$ $w_{1} v_{1}^{N}\left(y_{1}\right)+w_{2} v_{2}^{N}\left(y_{2}\right)$, where $v_{1}^{N}\left(y_{1}\right)=\frac{y_{1}}{20}$ and $v_{2}^{N}\left(y_{2}\right)=\frac{y_{2}}{6}$. The given preference statement implies $V\left(y_{1}+1, y_{2}\right)-V\left(y_{1}, y_{2}\right)=V\left(y_{1}, y_{2}+2\right)-V\left(y_{1}, y_{2}\right)$ from which it can be solved $\frac{w_{1}}{20}=\frac{2 w_{2}}{6} \Rightarrow w_{1} \approx 0.87, w_{2} \approx 0.13$.
With these weights, the best ticket buying strategy is $\left(y_{1}, y_{2}\right)=(10,0)$ as it provides the largest overall value among the relevant decision alternatives (the PO solutions), see the Excel model solution for concrete comparisons.
d) With the weighted max-norm approach we minimize the value of Δ. Thus $c^{T}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$. Now the inequality constraint $A x \leq b$ must include the additional constraints (considering the utopian vector and Δ) and the budget constraint.

Notice $\lambda_{1}\left(f_{1}^{*}-f_{1}(x)\right) \leq \Delta \Leftrightarrow-\lambda_{1} f_{1}(x)-\Delta \leq-\lambda_{1} f_{1}^{*} \Leftrightarrow-\lambda_{1}\left(2 x_{1}+x_{2}\right)-\Delta \leq-\lambda_{1} f_{1}^{*}$.
Similarly $\lambda_{2}\left(f_{2}^{*}-f_{2}(x)\right) \leq \Delta \Leftrightarrow-\lambda_{2} x_{2}-\Delta \leq-\lambda_{2} f_{2}^{*}$
In one matrix, including budget constraint:

$$
\left[\begin{array}{ccc}
2 & 3 & 0 \\
-2 \lambda_{1} & -\lambda_{1} & -1 \\
0 & -\lambda_{2} & -1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\Delta
\end{array}\right] \leq\left[\begin{array}{c}
20 \\
-\lambda_{1} f_{1}^{*} \\
-\lambda_{2} f_{2}^{*}
\end{array}\right] \Leftrightarrow A x \leq b
$$

Notice, that $x_{1}, x_{2} \in \mathbb{N}$

